Previous Chapter: 6 Wastewater Surveillance for Emerging Pathogen Threats
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

References

Aboud, L., Y. Xu, E. P. F. Chow, T. Wi, R. Baggaley, M. B. Mello, C. K. Fairley, and J. J. Ong. 2021. Diagnostic accuracy of pooling urine, anorectal, and oropharyngeal specimens for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae: A systematic review and meta-analysis. BMC Medicine 19:285. https://doi.org/10.1186/s12916-021-02160-9 (accessed May 3, 2024).

Adams, C., A. Kirby, M. Bias, A. Riser, K. K. Wong, J. W. Mercante, and H. Reese. 2024. Detecting Mpox cases through wastewater surveillance—United States, August 2022–May 2023. Morbidity and Mortality Weekly Report 73(2):37–43. https://www.cdc.gov/mmwr/volumes/73/wr/pdfs/mm7302a3-H.pdf (accessed April 1, 2024).

Agrawal, S., L. Orschler, S. Tavazzi, R. Greither, B. M. Gawlik, and S. Lackner. 2022. Genome sequencing of wastewater confirms the arrival of the SARS-CoV-2 omicron variant at Frankfurt Airport but limited spread in the City of Frankfurt, Germany, in November 2021. Microbiology Resource Announcements 11(2). https://doi.org/10.1128/mra.01229-21 (accessed May 3, 2024).

Ahmed, W., A. Bivins, P. M. Bertsch, K. Bibby, P. M. Choi, K. Karkas, P. Gyawali, K. A. Hamilton, E. Haramoto, M. Kitajima, S. L. Simpson, S. Tondukar, K. V. Thomas, and J. F. Mueller. 2020. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Current Opinion in Environmental Science & Health 17:82–93. https://doi.org/10.1016/j.coesh.2020.09.003 (accessed May 3, 2024).

Ahmed, W., A. Bivins, S. L. Simpson, P. M. Bertsch, J. Ehret, I. Hosegood, S. S. Metcalfe, W. J. M. Smith, K. V. Thomas, J. Tynan, and J. F. Mueller. 2022a. Wastewater surveillance demonstrates high predictive value for COVID-19 infection on board repatriation flights to Australia. Environment International 158:106938 (accessed May 3, 2024).

Ahmed, W., W. J. M. Smith, S. Metcalfe, G. Jackson, P. M. Choi, M. Morrison, D. Field, P. Gyawali, A. Bivins, K. Bibby, and S. L. Simpson. 2022b. Comparison of RT-qPCR and RT-dPCR platforms for the trace detection of SARS-CoV-2 RNA in wastewater. American Chemical Society Publications 2(11):1871–1880. https://doi.org/10.1021/acsestwater.1c00387 (accessed May 3, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Ahmed, W., et al. 2022c. Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment 805:149877.

Ai, Y., A. Davis, D. Jones, S. Lemeshow, H. Tu, F. He, P. Re, X. Pan, Z. Bohrerova, and J. Lee. 2021. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. Science of the Total Environment 801:149757.

Akinbobola, A. B., R. Kean, S. M. A. Hanifi, and R. S. Quilliam. 2023. Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris. PLoS Pathogens 19(4):1011268. https://doi.org/10.1371/journal.ppat.1011268 (accessed May 3, 2024).

Allayeh, A. K., S. A. Al-Daim, N. Ahmed, M. El-Gayar, and A. Mostafa. 2022. Isolation and genotyping of adenoviruses from wastewater and diarrheal samples in Egypt from 2016 to 2020. Viruses 14(10):2192. https://doi.org/10.3390/v14102192 (accessed May 3, 2024).

Ammerman, M. L., S. Mullapudi, J. Gilbert, K. Figueroa, F. P. N. Cruz, K. M. Bakker, M. C. Eisenberg, B. Foxman, and K. R. Wigginton. 2024. Norovirus GII wastewater monitoring for epidemiological surveillance. PLoS Water 3(1):e0000198. https://doi.org/10.1371/journal.pwat.0000198 (accessed May 3, 2024).

Amos, G. C. A., P. M. Hawkey, W. H. Gaze, and E. M. Ellington. 2014. Wastewater effluent contributes to the dissemination of CTX-M-15 in the natural environment. Journal of Antimicrobial Chemotherapy 69(7):1785–1791. https://doi.org/10.1093/jac/dku079 (accessed November 20, 2024).

Appiah, G., T. Smith, R. Wegrzyn, R. C. Morfino, S. Guadliardo, S. Milford, A. T. Walker, E. T. Ernst, W. W. Darrow, S. L. Li, T. Aichele, A. Rothstein, B. Rome, D. MacCannell, G. Woronoff, K. Robinson, D. Dai, B. Girinathan, A. Hicks, B. Cosca, A. Plocik, B. Simen, L. Moriarty, M. S. Cetron, and C. R. Friedman. 2022. The impact of traveler-based genomic surveillance on SARS-CoV-2 variant detection in arriving international air travelers—United States, November 29, 2021–April 24, 2022. Open Forum Infectious Diseases 9(Suppl 2). https://doi.org/10.1093/ofid/ofac492.087 (accessed May 6, 2024).

Arora, M., J. Moser, H. Phadke, A. A. Basha, and S. L. Spencer. 2017. Endogenous replication stress in mother cells leads to quiescence of daughter cells. Cell Reports 19(7):1351–1364. https://doi.org/10.1016/j.celrep.2017.04.055 (accessed May 6, 2024).

Arts, P. J., J. D. Kelly, C. M. Midgley, K. Anglin, S. Lu, G. R. Abedi, R. Andino, K. M. Bakker, B. Banman, A. B. Boehm, and M. Briggs-Hagen. 2023. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. Msphere 8(4):e00132-23. https://doi.org/10.1128/msphere.00132-23 (accessed May 6, 2024).

APHL (Association of Public Health Laboratories). 2022. SARS-CoV-2 wastewater surveillance testing guide for public health laboratories. Association of Public Health Laboratories. https://www.aphl.org/aboutAPHL/publications/Documents/EH-2022-SARSCoV2-Wastewater-Surveillance-Testing-Guide.pdf (accessed May 3, 2024).

APHL. 2024. National trends in wastewater surveillance 2023 survey report. https://www.aphl.org/aboutAPHL/publications/Documents/EH-2023-Wastewater-Survey.pdf (accessed June 26, 2024)

Auguet, O. T., M. Pijuan, C. M. Borrego, S. Rodriguez-Mozaz, X. Triado-Margarit, S. V. D. Giustina, and O. Gutierrez. 2017. Sewers as potential reservoirs of antibiotic resistance. Science of the Total Environment 605–606:1047–1054. https://doi.org/10.1016/j.scitotenv.2017.06.153 (accessed May 6, 2024).

Babler, K., M. Sharkey, S. Arenas, A. Amirali, C. Beaver, S. Comerford, K. Goodman, G. Grills, M. Holung, E. Kobetz, J. Laine, W. Lamar, C. Mason, D. Pronty, B. Reding, S. Schurer, N. S. Solle, M. Stevenson, D. Vidovic, H. Solo-Gabriele, and B. Shukla. 2023. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. Science of the Total Environment 898:165459. https://doi.org/10.1016/j.scitotenv.2023.165459 (accessed May 6, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Barber, C., K. Crank, K. Papp, G. K. Innes, B. W. Schmitz, J. Chavez, A. Rossi, and D. Gerrity. 2023. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in southern Nevada. Environmental Science & Technology | American Chemical Society Publications 57(4):1755–1763. https://doi.org/10.1021/acs.est.2c07763 (accessed May 6, 2024).

Barry-Jester, A. M. 2022. Health officials see bright future in poop surveillance. KFF Health News-formerly KHN. https://kffhealthnews.org/news/article/sewage-surveillance-tracking-covid-infectious-disease-modesto-california/ (accessed June 14, 2024).

Beattie, R.E., A.D. Blackwood, T. Clerkin, C. Dinga, and R.T. Noble. 2022. Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater. PLOS ONE 17(6):e0270659. https://doi.org/10.1371/journal.pone.0270659 (accessed July 12, 2024).

Bivins, A., et al. 2020. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environmental Science & Technology | American Chemical Society Publications 54(13):7754–7757. https://doi.org/10.1021/acs.est.0c02388 (accessed May 6, 2024).

Bivins, A., D. North, Z. Wu, M. Shaffer, W. Ahmed, and K. Bibby. 2021. Within- and between-day variability of SARS-CoV-2 RNA in municipal wastewater during periods of varying COVID-19 prevalence and positivity. Environmental Science & Technology Water| American Chemical Society Publications 1(9):2097–2108. https://doi.org/10.1021/acsestwater.1c00178 (accessed May 6, 2024).

Bivins, A., D. Kaya, W. Ahmed, J. Brown, C. Butler, J. Greaves, R. Leal, K. Maas, G. Rao, S. Sherchan, D. Sills, R. Sinclair, R. T. Wheeler, and C. Mansfeldt. 2022. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Science of the Total Environment 835:155347. https://doi.org/10.1016/j.scitotenv.2022.155347 (accessed May 6, 2024).

Bivins, A., A. Franklin, S. Simpson, and W. Ahmed. 2023. The lavatory lens: Tracking the global movement of pathogens via aircraft wastewater. Critical Reviews in Environmental Science and Technology 54(4):1–21. https://doi.org/10.1080/10643389.2023.2239129 (accessed November 20, 2024).

Blaser, M.J. 2004. Bacteria and diseases of unknown cause: Hemolytic-uremic syndrome. Journal of Infectious Diseases 189(3):552–563. https://doi.org/10.1086/381129 (accessed May 6, 2024).

Boehm, A. B., B. Hughes, D. Duong, V. Chan-Herur, A. Buchman, M. K. Wolfe, and B. J. White. 2023a. Wastewater concentrations of human influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and seasonal coronavirus nucleic-acids during the COVID-19 pandemic: A surveillance study. The Lancet Microbe 4(5):e340–e348. https://doi.org/10.1016/s2666-5247(22)00386-x (accessed May 6, 2024).

Boehm, A., M. K. Wolfe, B. J. White, B. Hughes, and D. Duong. 2023b. Two years of longitudinal measurements of human adenovirus group F, norovirus GI and GII, rotavirus, enterovirus, enterovirus D68, hepatitis A virus, Candida auris, and West Nile virus nucleic acids in wastewater solids: A retrospective study at two wastewater treatment plants. MedRxiv. https://doi.org/10.1101/2023.08.22.23294424 (accessed May 6, 2024).

Boehm, A. B., M. K. Wolfe, B. J. White, B. Hughes, D. Duong, N. Banaei, and A. Bidwell. 2023c. Human norovirus (HuNoV) GII RNA in wastewater solids at 145 United States wastewater treatment plants: Comparison to positivity rates of clinical specimens and modeled estimates of HuNoV GII shedders. Journal of Exposure Science & Environmental Epidemiology. https://doi.org/10.1038/s41370-023-00592-4 (accessed May 6, 2024).

Boehm, A. B., D. A. Wadford, A. Chen, T. Padilla, C. Wright, L. Moua, T. Bullick, M. Salas, C. Morales, C. A. Glaser, D. J. Vugia, A. T. Yu, B. Hughes, D. Duong, B. J. White, and M. K. Wolfe. 2023d. Trends of enterovirus D68 concentrations in wastewater, California, USA, February 2021–April 2023. Emerging Infectious Diseases 29(11):2362. https://doi.org/10.3201/eid2911.231080 (accessed May 6, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Boehm, A. B., B. Shelden, D. Duong, N. Banaei, B. J. White, and M. K. Wolfe. 2024. A retrospective longitudinal study of adenovirus group F, norovirus GI and GII, rotavirus, and enterovirus nucleic acids in wastewater solids at two wastewater treatment plants: Solid-liquid partitioning and relation to clinical testing data. mSphere 9(3):e00736-23. https://doi.org/10.1128/msphere.00736-23 (accessed May 6, 2024).

Borchardt, M.A., A.B. Boehm, M. Salit, S.K. Spencer, K.R. Wigginton, and R.T. Noble. 2021. The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR quality and reporting for environmental microbiology. Environmental Science & Technology 55(15):10210–10223. https://doi.org/10.1021/acs.est.1c01767 (accessed July 12, 2024).

Breulmann, M., R. Kallies, K. Bernhard, A. Gasch, R. A. Muller, H. Harms, A. Chatzinotas, and M. van Afferden. 2023. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. Science of the Total Environment 887:164143. https://doi.org/10.1016/j.scitotenv.2023.164143 (accessed May 9, 2024).

Brouwer, A. F., J. N. S. Eisenberg, C. D. Pomeroy, L. M. Shulman, M. Hindiyeh, Y. Manor, I. Grotto, J. S. Koopman, and M. C. Eisenberg. 2018. Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proceedings of the National Academy of Sciences 115(45):E10625–E10633. https://doi.org/10.1073/pnas.1808798115 (accessed May 6, 2024).

Brown, C. L., I. M. Keenum, D. Dai, L. Zhang, P. J. Vikesland, and A. Pruden. 2021. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Scientific Reports 11(1):3753. https://doi.org/10.1038/s41598-021-83081-8 (accessed May 6, 2024).

Bushnell, G., F. Mitrani-Gold, and L. M. Mundy. 2013. Emergence of New Delhi metallo-β-lactamase type 1-producing Enterobacteriaceae and non-Enterobacteriaceae: Global case detection and bacterial surveillance. International Journal of Infectious Diseases 17(5): e325–e333. https://doi.org/10.1016/j.ijid.2012.11.025 (accessed November 20, 2024).

Bustin, S.A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797 (accessed July 12, 2024).

Casanova, L., W. A. Rutala, D. J. Weber, and M. D. Sobsey. 2009. Survival of surrogate coronaviruses in water. Water Research 43(7):1893–1898. https://doi.org/10.1016/j.watres.2009.02.002 (accessed November 20, 2024).

CDC (Centers for Disease Control and Prevention). 2023a. Technical report: Highly pathogenic avian influenza A(H5N1) viruses. National Center for Immunization and Respiratory Diseases. https://www.cdc.gov/flu/avianflu/spotlights/2022-2023/h5n1-technical-report_december.htm (accessed May 9, 2024).

CDC. 2023b. Wastewater surveillance testing methods. National Wastewater Surveillance System. https://www.cdc.gov/nwss/testing.html (accessed May 9, 2024).

CDC. 2023c. Press release: CDC announces $262M funding to support National Network for Outbreak Response and Disease Modeling. September 22. https://www.cdc.gov/media/releases/2023/p0922-disease-modeling.html (accessed May 9, 2024).

CDC. 2023d. Developing a wastewater surveillance sampling strategy. National Wastewater Surveillance System. https://www.cdc.gov/nwss/sampling.html (accessed May 9, 2024).

CDC. 2023e. Public health interpretation and use of wastewater surveillance data. https://www.cdc.gov/nwss/interpretation.html (accessed June 29, 2024).

CDC. 2023f. Wastewater surveillance data reporting and analytics. https://www.cdc.gov/nwss/reporting.html (accessed June 29, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Chan, E. M., L. C. Kennedy, M. K. Wolfe, and A. B. Boehm. 2023. Identifying trends in SARS-CoV-2 RNA in wastewater to infer changing COVID-19 incidence: Effect of sampling frequency. PLOS Water 2(4):e0000088. https://doi.org/10.1371/journal.pwat.0000088 (accessed May 9, 2024).

Chan, P. K. S. 2002. Outbreak of avian influenza A (H5N1) virus infection in Hong Kong in 1997. Clinical Infectious Diseases 34(2):S58–S64. https://doi.org/10.1086/338820 (accessed May 9, 2024).

Chan-Yeung, M., and R. H. Xu. 2003. SARS: epidemiology. Respirology 8:S9–S14. https://doi.org/10.1046/j.1440-1843.2003.00518.x (accessed July 24, 2024).

Chen, W., and K. Bibby. 2023a. Making waves: Establishing a modeling framework to evaluate novel targets for wastewater-based surveillance. Water Research 245:120573.

Chen, W., and K. Bibby. 2023b. A model-based framework to assess the feasibility of monitoring zika virus with wastewater-based epidemiology. ACS ES&T Water 3(4):1071-1081.

Chik, A. H., M. B. Glier, M. Servos, C. S. Mangat, X. L. Pang, Y. qiu, P. M. D’Aoust, J. B. Burnet, R. Delatolla, S. Dorner, Q. Geng, J. P. Giesy Jr., R. M. McKay, M. R. Mulvey, N. Prystajecky, N. Srikanthan, Y. Xie, B. Conant, and S. E. Hrudey. 2021. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: results and implications from a collaborative inter-laboratory study in Canada. Journal of Environmental Sciences 107:218-229. https://doi.org/10.1016/j.jes.2021.01.029 (accessed July 24, 2024).

Chopra, A., A. Rodriguez, B. A. Prakash, R. Raskar, and T. Kingsley. 2023. Using neural networks to calibrate agent based models enables improved regional evidence for vaccine strategy and policy. Vaccine 41(48):7067–7071. https://doi.org/10.1016/j.vaccine.2023.08.060 (accessed May 9, 2024).

Ciannella, S., C. González-Fernández, and J. Gomez-Pastora. 2023. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of the Total Environment 878: 162953.

Ciesielski, M., D. Blackwood, T. Clerkin, R. Gonzales, H. Thompson, A. Larson, and R. Noble. 2021. Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater. Journal of Virological Methods 297:114230. https://doi.org/10.1016/j.jviromet.2021.114230 (accessed May 9, 2024).

Colman, E., P. Holme, H. Sayama, and C. Gershenson. 2019. Efficient sentinel surveillance strategies for preventing epidemics on networks. PLoS Computational Biology 15(11):e1007517. https://doi.org/10.1371/journal.pcbi.1007517 (accessed May 9, 2024).

Crank, K., K. Papp, C. Barber, P. Wang, A. Bivins, and D. Gerrity. 2023. Correspondence on The Environmental Microbiology Minimum Information (EMMI) guidelines: qPCR and dPCR quality and reporting for environmental microbiology. Environmental Science & Technology 57(48):20448–20449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702426/ (accessed May 9, 2024).

Curtis, K., D. Keeling, K. Yetka, A. Larson, and R. Gonzalez. 2020. Wastewater SARS-CoV-2 RNA concentration and loading variability from grab and 24-hour composite samples. MedRxiv. https://doi.org/10.1101/2020.07.10.20150607 (accessed May 9, 2024).

Cutrupi, F., M. Rossi, M. Cadonna, E. Poznanski, S. Manara, M. Postinghel, G. Palumbi, M. Bellisomi, E. Nicosia, G. Allaria, L. Dondero, C. Veneri, P. Mancini, G. Bonanno Ferraro, G. Rosa, E. Suffredini, P. Foladori, and E. Grasselli. 2023. Evaluation of concentration procedures, sample pre-treatment, and storage condition for the detection of SARS-CoV-2 in wastewater. Environmental Science and Pollution Research International 30(48): 106660–106670. https://doi.org/10.1007/s11356-023-29696-y (accessed July 12, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Daza-Torres, M. L., J. C. Montesinos-Lopez, C. Herrera, Y. E. Garcia, C. C. Naughton, H. N. Bischel, and M. Nuno. 2024. Optimizing spatial distribution of wastewater-based disease surveillance to advance health equity. MedRxiv. https://doi.org/10.1101/2024.05.02.24306777 (accessed June 24, 2024).

DeJonge, P. M., C. Adams, I. Pray, M. K. Schussman, R. B. Fahney, M. Shafer, D. S. Antkiewicz, and A. Roguet. 2023. Wastewater surveillance data as a complement to emergency department visit data for tracking incidence of influenza A and respiratory syncytial virus—Wisconsin, August 2022–March 2023. Morbidity and Mortality Weekly Report 72(37):1005–1009. https://doi.org/10.15585/mmwr.mm7237a2 (accessed May 9, 2024).

Dewey-Mattia, D., K. Maikonda, A. J. Hall, M. E. Wise, and S. J. Crowe. 2018. Surveillance for foodborne disease outbreaks—United States, 2009–2015. Morbidity and Mortality Weekly Report 67(10):1–11. https://doi.org/10.15585/mmwr.ss6710a1 (accessed May 9, 2024).

Dobis, E. A., T. Krumel, J. Cromartie, K. L. Thomas (Conley), A. Sanders, and R. Ortiz. 2012. Rural America at a Glance: 2021 Edition. U.S. Department of Agriculture Economic Research Service (EIB-230):18. https://www.ers.usda.gov/webdocs/publications/102576/eib-230.pdf?v=1920.3 (accessed May 9, 2024).

Dorélien, A. M., A. Simon, S. Hagge, K. T. Call, E. Enns, and S. Kulasingam. 2020. Minnesota social contacts and mixing patterns survey with implications for modelling of infectious disease transmission and control. Survey Practice 13(1). https://doi.org/10.29115/SP-2020-0007 (accessed May 9, 2024).

Drake, J. M., A. Handel, E. Marty, E. B. O’Dea, T. O’Sullivan, G. Righi, and A. T. Tredennick. 2023. A data-driven semi-parametric model of SARS-CoV-2 transmission in the United States. PLoS Computational Biology 19(11):e1011610. https://doi.org/10.1371/journal.pcbi.1011610 (accessed May 9, 2024).

Duvallet, C., F. Wu, K. A. McElroy, M. Imakaev, N. Endo, A. Xiao, J. Zhang, R. Floyd-O’Sullivan, M. M. Powell, S. Mendola, S. T. Wilson, F. Cruz, T. Melman, C. L. Sathyanarayana, S. W. Olsen, T. B. Erickson, N. Ghaeli, P. Chai, E. J. Alm, and M. Matus. 2022. Nationwide trends in COVID-19 cases and SARS-CoV-2 RNA wastewater concentrations in the United States. ACS ES&T Water 2(11):1899–1909. https://doi.org/10.1021/acsestwater.1c00434 (accessed May 9, 2024).

Elachola, H., E. Gozzer, J. Zhuo, S. Sow, R. Kattan, S. Mimesh, J. Al-Tawfiq, M. Al-Sultan, and Z. Memish. 2016. Mass gatherings: A one-stop opportunity to complement global disease surveillance. Journal of Health Specialties 4(3):178–185.

Environmental Protection Agency. 2023. Wastewater sampling. Athens, GA: Laboratory Services and Applied Science Division. http://www.epa.gov/sites/default/files/2017-07/documents/wastewater_sampling306_af.r4.pdf (accessed May 9, 2024).

Erster, O., I. Bar-Or, V. Levy, R. Shatzman-Steuerman, D. Sofer, L. Weiss, R. Vasserman, I. S. Fratty, K. Kestin, M. Elul, N. Levi, R. Alkrenawi, E. Mendelson, M. Mandelboim, and M. Weil. 2022. Monitoring of enterovirus D68 outbreak in Israel by a parallel clinical and wastewater based surveillance. Viruses 14(5):1010. https://doi.org/10.3390/v14051010 (accessed May 9, 2024).

Federal Task Force on Combating Antibiotic-Resistant Bacteria. 2020. National action plan for combatting antibiotic-resistant bacteria. https://aspe.hhs.gov/sites/default/files/migrated_legacy_files//196436/CARB-National-Action-Plan-2020-2025.pdf (accessed June 26, 2024).

Feng, S., A. Roguet, J. S. McClary-Gutierrez, R. J. Newton, N. Kloczko, J. G. Meiman, and S. L. McLellan. 2021. Evaluation of sampling, analysis, and normalization methods for SARSCoV-2 concentrations in wastewater to assess COVID-19 burdens in Wisconsin communities. ACS ES&T Water 1(8):1955–1965. https://doi.org/10.1021/acsestwater.1c00160 (accessed May 9, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Fisher, J. C., A. M. Eren, H. C. Green, O. C. Shanks, H. G. Morrison, J. H. Vineis, M. L. Sogin, and S. L. McLellen. 2015. Comparison of sewage and animal fecal microbiomes by using oligotyping reveals potential human fecal indicators in multiple taxonomic groups. Applied and Environmental Microbiology 81(20):7023–7033. https://doi.org/10.1128/aem.01524-15 (accessed May 9, 2024).

Fung, B., A. Gopez, V. Servellita, S. Arevalo, C. Ho, A. Deucher, E. Thornborrow, C. Chiu, and S. Miller. 2020. Direct comparison of SARS-CoV-2 analytical limits of detection across seven molecular assays. Journal of Clinical Microbiology 58(9). https://doi.org/10.1128/jcm.01535-20 (accessed May 9, 2024).

George, A. L., D. Kaya, B. A. Layton, K. Bailey, S. Mansell, C. Kelly, K. J. Williamson, and T. S. Radneicki. 2022. Impact of sampling type, frequency, and scale of the collection system on SARS-CoV-2 quantification fidelity. Environmental Science & Technology Letters 9(2):160–165. https://doi.org/10.1021/acs.estlett.1c00882 (accessed May 9, 2024).

Ghebremedhin, B. 2014. Human adenovirus: Viral pathogen with increasing importance. European Journal of Microbiology and Immunology 4(1):26–33. https://doi.org/10.1556/eujmi.4.2014.1.2 (accessed May 9, 2024).

Godlewska, K., P. Stepnowski, and M. Paszkiewicz. 2020. Pollutant analysis using passive samplers: Principles, sorbents, calibration and applications. A review. Environmental Chemistry Letters 19(1):465–520. https://doi.org/10.1007/s10311-020-01079-6 (accessed May 9, 2024).

Graham, K. E., S. K. Loeb, M. K. Wolfe, D. Catoe, N. Sinnott-Armstrong, S. Kim, K. M. Yamahara, L. M. Sassoubre, L. M. M. Grijalva, L. Roldan, Hernandez, K. Langenfeld, K. R. Wigginton, and A. B. Boehm. 2020. SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 cases in a large urban sewershed. Environmental Science & Technology 55(1):488–498. https://doi.org/10.1021/acs.est.0c06191 (accessed May 9, 2024).

Gresham, D., M. J. Dunham, and D. Botstein. 2008. Comparing whole genomes using DNA microarrays. Nature Reviews Genetics 9(4):291–302. https://doi.org/10.1038/nrg2335 (accessed May 9, 2024).

Habtewold, J., D. McCarthy, E. McBean, I. Law, L. Goodridge, M. Habash, and H. M. Murphy. 2022. Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2. Environmental Research 204(Pt B):112058. https://doi.org/10.1016/j.envres.2021.112058 (accessed May 9, 2024).

Hackenberger, D., H. Imtiaz, A. R. Raphenya, B. P. Alcock, H. N. Poinar, G. D. Wright, and A. G. McArthur. 2024. CARPDM: Cost-effective antibiotic resistome profiling of metagenomic samples using targeted enrichment. bioRxiv. https://doi.org/10.1101/2024.03.27.587061 (accessed May 10, 2024).

Hart, O. E., and R. U. Halden. 2020. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally. Water Research 172:115473. https://doi.org/10.1016/j.watres.2020.115473 (accessed May 10, 2024).

Hassard, F., T. R. Smith, A. B. Boehm, S. Nolan, O. O’Mara, M. Di Cesare, and D. Graham. 2022. Wastewater surveillance for rapid identification of infectious diseases in prisons. The Lancet Microbe 3(8):e556–e557. https://doi.org/10.1016/S2666-5247(22)00154-9 (accessed May 10, 2024).

Hayes, E. K., A. K. Stoddart, and G. A. Gagnon. 2022. Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. Science of the Total Environment 847:157548 https://doi.org/10.1016/j.scitotenv.2022.157548 (accessed May 10, 2024).

Hayes, E. K., C. L. Sweeney, L. E. Anderson, B. Li, G. B. Erjavec, M. T. Gouthro, W. H. KrKosek, A. K. Stoddart, and G. A. Gagnon. 2021. A novel passive sampling approach for SARSCoV-2 in wastewater in a Canadian province with low prevalence of COVID-19. Environmental Science: Water Research & Technology 7(9):1576–1586. https://doi.org/10.1039/d1ew00207d (accessed May 10, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Heß, S., D. Kneis, T. Österlund, B. Li, E. Kristiansson, and T. U. Berendonk. 2019. Sewage from airplanes exhibits high abundance and diversity of antibiotic resistance genes. Environmental Science & Technology 53(23):13898–13905. https://doi.org/10.1021/acs.est.9b03236 (accessed May 10, 2024).

Hjelmsø, M. H., M. Hellmér, X. Fernandez-Cassi, N. Timoneda, O. Lukjancenko, M. Seidel, D. Elsässer, F. M. Aarestrup, C. Löfström, S. Bofill-Mas, J. F. Abril, R. Girones, and A. C. Schultz. 2017. Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PloS One 12(1):e0170199. https://doi.org/10.1371/journal.pone.0170199 (accessed July 24, 2024).

Hewitt, J., S. Trowsdale, B. A. Armstrong, J. R. Chapman, K. M. Carter, D. M. Croucher, C. R. Trent, R. E. Sim, and B. J. Gilpin. 2022. Sensitivity of wastewater-based epidemiology for detection of SARS-CoV-2 RNA in a low prevalence setting. Water Research 211:118032. https://doi.org/10.1016/j.watres.2021.118032 (accessed May 10, 2024).

HHS (U.S. Department of Health and Human Services). 2020. National action plan for combating antibiotic-resistant bacteria, 2020–2025. Office of the Assistant Secretary for Planning and Evaluation: Office of Science and Data Policy. https://aspe.hhs.gov/reports/national-action-plan-combating-antibiotic-resistant-bacteria-2020-2025 (accessed May 10, 2024).

Holst, M. M., J. Person, W. Jennings, R. M. Welsh, M. J. Focazio, P. M. Bradley, W. B. Schill, A. E. Kirby, and Z. A. Marsh. 2022. Rapid implementation of high-frequency wastewater surveillance of SARS-CoV-2. ACS ES&T Water 2(11):2201–2210. https://doi.org/10.1021/acsestwater.2c00094 (accessed May 10, 2024).

Hopkins, L., D. Persse, K. Caton, K. Ensor, R. Schneider, C. McCall, and L. B. Stadler. 2023. Citywide wastewater SARS-CoV-2 levels strongly correlated with multiple disease surveillance indicators and outcomes over three COVID-19 waves. Science of the Total Environment 855:158967. https://doi.org/10.1016/j.scitotenv.2022.158967 (accessed May 10, 2024).

Huge, B. J., D. North, C. B. Mousseau, K. Bibby, N. J. Dovichi, and M. M. Champion. 2022. Comparison of RT-dPCR and RT-qPCR and the effects of freeze–thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Scientific Reports 12:20641. https://doi.org/10.1038/s41598-022-25187-1 (accessed May 10, 2024).

Huggett, J. F., C. A. Foy, V. Benes, K. Emslie, J. A. Garson, R. Haynes, J. Hellemans, M. Kubista, R. D. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, C. T. Wittwer, and S. A. Bustin. 2013. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clinical Chemistry 59(6):892–902. https://doi.org/10.1373/clinchem.2013.206375 (accessed July 12, 2024).

Hughes, B., D. Duong, B. J. White, K. R. Wigginton, E. M. G. Chan, M. K. Wolfe, and A. B. Boehm. 2022. Respiratory syncytial virus (RSV) RNA in wastewater settled solids reflects RSV clinical positivity rates. Environmental Science and Technology Letters 9(2):173–187. https://doi.org/10.1021/acs.estlett.1c00963 (accessed May 10, 2024).

Hughes, H. E., O. Edeghere, S. J. O’Brien, R. Vivancos, and A. J. Elliot. 2020. Emergency department syndromic surveillance systems: A systematic review. BMC Public Health 20(1891):1–15. https://doi.org/10.1186/s12889-020-09949-y (accessed May 10, 2024).

Huston, P., V. L. Edge, and E. Bernier. 2019. Reaping the benefits of open data in public health. Canada Communicable Disease Report 45(10):252–256. https://doi.org/10.14745/ccdr.v45i10a01 (accessed May 10, 2024).

Ingram, D. D., and S. J. Franco. 2013. NCHS urban–rural classification scheme for counties. National Center for Health Statistics. Vital and Health Statistics 2(166). https://www.cdc.gov/nchs/data/series/sr_02/sr02_166.pdf (accessed May 10, 2024).

IOM (Institute of Medicine). 2015. Sharing clinical trial data: Maximizing benefits, minimizing risk. Washington, DC: The National Academies Press. https://doi.org/10.17226/18998 (accessed July 12, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Islam, G., A. Gedge, L. Linda-Jacabo, A. Kirkwood, D. Simmons, and J-P. Desaulniers. 2022. Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater. Science of the Total Environment 821: 153228.

Iuliano, A. D., et al. 2022. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022. Morbidity and Mortality Weekly Report 71(4):146–152. https://doi.org/10.15585/mmwr.mm7104e4 (accessed May 10, 2024).

Jobling, K., M. Quintela-Beluja, F. Hassard, P. Adamou, A. Blackburn, S. McIntyre-Nolan, J. L. Romalde, M. Di Cesare, and D. W. Graham. 2024. Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons. Journal of Water and Health 22(1):64–76. https://doi.org/10.2166/wh.2023.093 (accessed May 10, 2024).

Johnson, M. 2022. CDC launches public COVID-19 wastewater surveillance dashboard. Genome Web. https://www.genomeweb.com/covid-19/cdc-launches-public-covid-19-wastewater-surveillance-dashboard (accessed May 10, 2024).

Jones, G. M., E. Busby, J. A. Garson, P. R. Grant, E. Nastouli, A. S. Devonshire, and A. S. Whale. 2016. Digital PCR dynamic range is approaching that of real-time quantitative PCR. Biomolecular Detection and Quantification 10:31–33. https://doi.org/10.1016/j.bdq.2016.10.001 (accessed May 10, 2024).

Jones, D. L., J. M. Rhymes, M. J. Wade, J. L. Kevill, S. K. Malham, J. M. S. Grimsley, C. Rimmer, A. J. Weightman, and K. Farkas. 2023. Suitability of aircraft wastewater for pathogen detection and public health surveillance. Science of the Total Environment 856(Pt 2):159162. https://doi.org/10.1016/j.scitotenv.2022.159162 (accessed May 10, 2024).

Joung, M. J., C. S. Mangat, E. M. Mejia, A. Nagasawa, A. Nichani, C. Perez-Iratxeta, S. W. Peterson, and D. Champredon. 2023. Coupling wastewater-based epidemiological surveillance and modelling of SARS-CoV-2/COVID-19: Practical applications at the Public Health Agency of Canada. Canada Communicable Disease Report 49(5):166–174. https://doi.org/10.14745%2Fccdr.v49i05a01 (accessed May 10, 2024).

Jothikumar, N., T. L. Cromeans, V. R. Hill, X. Lu, M. D. Sobsey, and D. D. Erdman. 2005. Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Applied and Environmental Microbiology 71(6):3131–3136. https://doi.org/10.1128/aem.71.6.3131-3136.2005 (accessed May 10, 2024).

Jumper, J., et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://www.nature.com/articles/s41586-021-03819-2 (accessed May 10, 2024).

Kazmer, K. R., M. L. Ammerman, E. A. Edwards, M. C. Eisenberg, J. Gilbert, J. P. Montgomery, V. M. Pierce, J. B. Weinberg, and K. R. Wigginton. 2024. Respiratory human adenovirus outbreak captured in wastewater surveillance. medRxiv. https://doi.org/10.1101/2024.06.15.24308982 (accessed July 11, 2024).

Kim, S., et al. 2022. SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. Environmental Science: Water Research & Technology 8(4):757–770. https://doi.org/10.1039/D1EW00826A (accessed May 10, 2024).

Kirby, A. E., et al. 2022. Notes from the field: Early evidence of the SARS-CoV-2 B.1.1.529 (omicron) variant in community wastewater—United States, November–December 2021. Morbidity and Mortality Weekly Report 71:103–105. https://doi.org/10.15585/mmwr.mm7103a5 (accessed May 10, 2024).

Klaassen, F., R. H. Holm, T. Smith, T. Cohen, A. Bhatnagar, and N. A. Menzies. 2024. Predictive power of wastewater for nowcasting infectious disease transmission: A retrospective case study of five sewershed areas in Louisville, Kentucky. Environmental Research 240(Pt 2):117395. https://doi.org/10.1016/j.envres.2023.117395 (accessed May 10, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Klevens, R. M., C. C. W. Young, S. W. Olesen, A. Osinski, D. Church, J. Muten, L. Chou, T. Segal, and K. Cranston. 2023. Evaluation of wastewater surveillance for SARS-CoV-2 in Massachusetts correctional facilities, 2020–2022. Frontiers in Water 5. https://doi.org/10.3389/frwa.2023.1083316 (accessed May 10, 2024).

Kmush, B. L., D. Monk, H. Green, D. A. Sachs, T. Zeng, and D. A. Larsen. 2022. Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater. FEMS Microbes 3. https://doi.org/10.1093/femsmc/xtac017 (accessed May 10, 2024).

Kosulin, K., E. Geiger, A. Vecsei, W. D. Huber, M. Rauch, E. Brenner, F. Wrba, K. Hammer, A. Innerhofer, U. Potschger, A. Lawitschka, S. Matthes-Leodolter, G. Fritsch, and T. Lion. 2016. Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clinical Microbiology and Infection 22(4):381.e1–381.e8. https://doi.org/10.1016/j.cmi.2015.12.013 (accessed May 13, 2024).

Kralik, P., and M. Ricchi. 2017. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology 8:108.

Kumblathan, T., Y. Liu, G. K. Uppal, S. E. Hrudey, and X.-F. Li. 2021. Wastewater-based epidemiology for community monitoring of SARS-CoV-2: Progress and challenges. ACS Environmental Au 1(1):18–31. https://doi.org/10.1021/acsenvironau.1c00015 (accessed May 13, 2024).

Lai, M., Y. Cao, S. S. Wulff, T. J. Robinson, A, McGuire, and B. Bisha. 2023. A time series based machine learning strategy for wastewater-based forecasting and nowcasting of COVID-19 dynamics. Science of the Total Environment 897:165105. https://doi.org/10.1016/j.scitotenv.2023.165105 (accessed May 13, 2024).

Langan, L. M., M. O’Brien, Z. C. Rundell, J. A. Black, B. J. Ryan, C. K. Chandliss, R. S. Norman, and B. W. Brooks. 2022. Comparative analysis of RNA-extraction approaches and associated influences on RT-qPCR of the SARS-CoV-2 RNA in a university residence hall and quarantine location. ACS ES&T Water 2(11):1929–1943. https://doi.org/10.1021/acsestwater.1c00476 (accessed May 13, 2024).

Langeveld, J., R. Schilperoot, L. Heijnen, G. Elsinga, C. E. M. Schapendonk, E. Fanoy, E. I. T. de Schepper, M. P. G. Koopmans, M. de Graaf, and G. Medema. 2023. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. Science of the Total Environment 865:161196. https://doi.org/10.1016/j.scitotenv.2022.161196 (accessed May 13, 2024).

Lanning, A., and E. W. Peterson. 2012. Evaluating subdivisions for identifying extraneous flow in separate sanitary sewer systems. Journal of Water Resource and Protection 4(6):334–341. https://doi.org/10.4236/jwarp.2012.46037 (accessed May 13, 2024).

Leisman, K. P., C. Owen, M. M. Warns, A. Tiwari, G. (Z). Bian, S. M. Owens, C. Catlett, A. Shrestha, R. Porestsky, A. I. Packman, and N. M. Mangan. 2024. A modeling pipeline to relate municipal wastewater surveillance and regional public health data. Water Research 252:121178. https://doi.org/10.1016/j.watres.2024.121178 (accessed May 13, 2024).

Lenaker, P., M. A. Pronschinske, S. R. Corsi, J. P. Stokdyk, H. T. Olds, D. K. Dila, and S. L. McLellan. 2024. A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. Science of the Total Environment 930:172505. https://doi.org/10.1016/j.scitotenv.2024.172505 (accessed May 13, 2024).

Li, F., J. Deng, C. Xie, G. Wang, M. Xu, C. Wu, J. Li, and Y. Zhong. 2023. The differences in virus shedding time between the Delta variant and original SARS-CoV-2 infected patients. Frontiers in Public Health 11:1132643. https://doi.org/10.3389/fpubh.2023.1132643 (accessed May 13, 2024).

Li, J., W. Ahmed, S. Metcalfe, W. J. M. Smith, B. Tscharke, P. Lynch, S. Sherman, P. H. N. Vo, S. L. Kaserzan, S. L. Simpson, D. T. McCarthy, K. V. Thomas, J. F. Mueller, and P. Thai. 2022. Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Research 218:118481. https://doi.org/10.1016/j.watres.2022.118481 (accessed May 13, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Li, J., I. Hosegood, D. Powell, B. Tscharke, J. Lawler, K. V. Thomas, and J. F. Mueller. 2023. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Global Health 11(5):e791–e795. https://doi.org/10.1016/s2214-109x(23)00129-8 (accessed May 13, 2024).

Li, X., S. Zhang, S. Sherchan, G. Orive, U. Lertxundi, E. Haramoto, R. Honda, M. Kumar, S. Arora, M. Kitajima, and G. Jiang. 2023. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. Journal of Hazardous Materials 441:129848. https://doi.org/10.1016/j.jhazmat.2022.129848 (accessed May 13, 2024).

Liu, P., M. Ibaraki, J. VanTassell, K. Geith, M. Cavallo, R. Kann, L. Guo, and C. L. Moe. 2022. A sensitive, simple, and low-cost method for COVID-19 wastewater surveillance at an institutional level. Science of the Total Environment 807:151047. https://doi.org/10.1016/j.scitotenv.2021.151047 (accessed May 13, 2024).

Liu, Y., W. Smith, M. Gebrewold, X. Wang, S. L. Simpson, A. Bivins, and W. Ahmed. 2023. Comparison of concentration and extraction workflows for qPCR quantification of intI1 and vanA in untreated wastewater. Science of the Total Environment 903:166442. https://doi.org/10.1016/j.scitotenv.2023.166442 (accessed May 13, 2024).

Maere, T., J. D. Therrien, and P. Vanrolleghem. 2022. Normalization practices for SARS-CoV-2 data in wastewater-based epidemiology. Quebec, Canada. Université Laval. https://nccid.ca/wp-content/uploads/sites/2/2023/02/Normalization-practices-Technical-Report-Final3.pdf (accessed May 13, 2024).

Markt, R., M. Mayr, E. Peer, A. O. Wagner, N. Lackner, and H. Insam. 2021. Detection and stability of SARS-CoV-2 fragments in wastewater: Impact of storage temperature. Pathogens 10(9):1215. https://doi.org/10.3390/pathogens10091215 (accessed May 13, 2024).

Martín-Pozo, L., M. del Carmen Gomez-Regalado, M. T. Garcia-Corcoles, and A. Zafra-Gomez. 2022. Chapter 16: Removal of quinolone antibiotics from wastewaters and sewage sludge. Emerging contaminants in the environment pp. 381–406. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-323-85160-2.00015-9 (accessed May 13, 2024).

McLellan, S. L., and A. Roguet. 2019. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Current Opinion in Biotechnology 57:34–41. https://doi.org/10.1016/j.copbio.2018.12.010 (accessed May 13, 2024).

Meadows, T., E. R. Coats, S. Narum, E. Top, B. J. Ridenhour, and T. Stalder. 2024. Epidemiological model can forecast COVID-19 outbreaks from wastewater-based surveillance in rural communities. medRxiv. https://doi.org/10.1101/2024.02.01.24302131 (accessed May 13, 2024).

Medema, G., L. Heijnen, G. Elsinga, R. Italiaander, and A. Brouwer. 2020. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters 7(7):511–516. https://doi.org/10.1021/acs.estlett.0c00357 (accessed May 13, 2024).

Mello, M. M., G. Triantis, R. Stanton, E. Blumenkranz, and D. M. Studdert. 2020. Waiting for data: Barriers to executing data use agreements. Science 367(6474):150–152. https://doi.org/10.1126/science.aaz7028 (accessed May 13, 2024).

Mello, M. M., J. S. Meschke, and G. H. Palmer. 2023. Mainstreaming wastewater surveillance for infectious disease. The New England Journal of Medicine 388(16):1441–1444.

Mercier, E., et al. 2022. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Scientific Reports 12(1):15777. https://doi.org/10.1038/s41598-022-20076-z (accessed May 13, 2024).

Metcalf & Eddy Inc., G. Tchobanoglous, F. L. Burton, R. Tsuchihashi, and H. D. Stensel. 2013. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Milne-Price, S., K. L. Miaszgowicz, and V. J. Munster. 2014. The emergence of the Middle East respiratory syndrome coronavirus. Pathogens and Disease 71(2):121–136. https://doi.org/10.1111/2049-632x.12166 (accessed May 13, 2024).

Monaghan, T. F., S. N. Rahman, C. W. Agudelo, A. J. Wein, J. M. Lazar, K. Everaert, and R. R. Dmochowski. 2021. Foundational statistical principles in medical research: Sensitivity, specificity, positive predictive value, and negative predictive value. Medicina 57(5):503. https://doi.org/10.3390/medicina57050503 (accessed May 13, 2024).

Mousa, A., et al. 2021. Social contact patterns and implications for infectious disease transmission—a systematic review and meta-analysis of contact surveys. eLife 10:e70294. https://doi.org/10.7554/eLife.70294 (accessed May 13, 2024).

Nadeau, S., et al. 2024. Influenza transmission dynamics quantified from RNA in wastewater in Switzerland. Swiss Medical Weekly 154(1):3503. https://doi.org/10.57187/s.3503 (accessed May 13, 2024).

NASEM (National Academies of Sciences, Engineering, and Medicine). 2023. Wastewater-based disease surveillance for public health action. Washington, DC: The National Academies Press. http://doi.org/10.17226/26767 (accessed June 17, 2024).

Nasir, J. A., et al. 2020. A comparison of whole genome sequencing of SARS-CoV-2 using amplicon-based sequencing, random hexamers, and bait capture. Viruses 12(8):895. https://doi.org/10.3390/v12080895 (accessed May 13, 2024).

Natarajan, A., et al. 2023. The tomato brown rugose fruit virus movement protein gene is a novel microbial source tracking marker. Applied and Environmental Microbiology 89(7). https://doi.org/10.1128/aem.00583-23 (accessed May 10, 2024).

Noble, R. T., S. M. Allen, A. D. Blackwood, W. Chu, S. C. Jiang, G. L. Lovelace, M. D. Sobsey, J. R. Stewart, and D. A. Wait. 2003. Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. Journal of Water and Health 1(4):195–207. https://pubmed.ncbi.nlm.nih.gov/15382724/ (accessed April 1, 2024).

OMB (Office of Management and Budget). 2024. Budget of the U.S. Government fiscal year 2025. Washington, DC: Office of Management and Budget.

Otto, J. L., M. Holodniy, and R. F. DeFraites. 2014. Public health practice is not research. American Journal of Public Health 104(4):596–602. https://doi.org/10.2105/AJPH.2013.301663 (accessed May 13, 2024).

Parkins, M. D., B. E. Lee, N. Acosta, M. Bautista, C. R. J. Hubert, S. E. Hrudey, K. Frankowski, and X. Pang. 2023. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clinical Microbiology 37(1):e00103-22. https://doi.org/10.1128/cmr.00103-22 (accessed June 4, 2024).

Parks, D. H., C. Rinke, M. Chuvochina, P.-A. Chaumeil, B. J. Woodcroft, P. N. Evans, P. Hugenholtz, and G. W. Tyson. 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology 2(11):1533–1542. https://doi.org/10.1038/s41564-017-0012-7 (accessed May 13, 2024).

Pecson, B. M., et al. 2021. Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: Findings from an interlaboratory methods evaluation in the US. Environmental Science: Water Research & Technology 7(3):504–520. https://doi.org/10.1039/D0EW00946F (accessed May 13, 2024).

Pellegrinelli, L., C. Galli, A. Seiti, V. Primache, A. Hirvonen, S. Schiarea, G. Salmoiraghi, S. Castiglioni, E. Ammoni, D. Cereda, S. Binda, and E. Pariani. 2023. Wastewater-based epidemiology revealed in advance the increase of enterovirus circulation during the COVID-19 pandemic. Science of the Total Environment 902:166539. https://doi.org/10.1016/j.scitotenv.2023.166539 (accessed May 13, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Pérez-Cataluña, A., E. Cuevas-Ferrando, W. Randazzo, I. Falco, A. Allende, and G. Sanchez. 2021. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Science of the Total Environment 758:143870. https://doi.org/10.1016/j.scitotenv.2020.143870 (accessed May 13, 2024).

Pérez-Zabaleta, M., C. Williams, and Z. Cetecioglu. 2022. New primer sets to detect recent human adenovirus F41 variants in wastewater: Is it linked to the new acute hepatitis? medRxiv. https://doi.org/10.1101/2022.09.16.22280038 (accessed May 13, 2024).

Phan, T., S. Brozak, B. Pell, A. Gitter, A. Xiao, K. D. Mena, Y. Kuang, and F. Wu. 2023. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. Science of the Total Environment 857:159326. https://doi.org/10.1016/j.scitotenv.2022.159326 (accessed May 14, 2024).

Philo, S. E., E. K. Keim, R. Swanstrom, A. Q. W. Ong, E. A. Burnor, A. L. Kossik, J. C. Harrison, B. A. Demeke, N. A. Zhou, N. K. Beck, J. H. Shirai, and J. S. Meschke. 2021. A comparison of SARS-CoV-2 wastewater concentration methods for environmental surveillance. Science of the Total Environment 760:144215. https://doi.org/10.1016/j.scitotenv.2020.144215 (accessed July 24, 2024).

Piotrowska, M., D. Przygodzinska, K. Matyjewicz, and M. Popowska. 2017. Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Frontiers in Microbiology 8:863. https://doi.org/10.3389/fmicb.2017.00863 (accessed May 13, 2024).

Polcz, P., K. Tornai, J. Juhász. G. Cserey, T. Pándics, E. Róka, M. Vargha, I. Z. Reguly, A. Csikász-Nagy, S. Pongor, and G. Szederḱenyi. 2023. Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants. Water Research 241:120098. https://doi.org/10.1016/j.watres.2023.120098 (accessed May 13, 2024).

Prasek, S. M., I. L. Pepper, G. K. Innes, S. Slinki, M. Ruedas, A. Sanchez, P. Bierly, W. Q. Betancourt, E. R. Stark, A. R. Foster, N. D. Betts-Childress, and B. W. Schmitz. 2022. Population level SARS-CoV-2 fecal shedding rates determined via wastewater-based epidemiology. Science of the Total Environment 838:156535. https://doi.org/10.1016/j.scitotenv.2022.156535 (accessed May 13, 2024).

Prasek, S. M., I. L. Pepper, G. K. Innes, S. Slinksi, W. Q. Betancourt, A. R. Foster, H. D. Yaglom, W. T. Porter, D. M. Engelthaler, and B. W. Schmitz. 2023. Variant-specific SARS-CoV-2 shedding rates in wastewater. Science of the Total Environment 857:159165. https://doi.org/10.1016/j.scitotenv.2022.159165 (accessed May 13, 2024).

Rainey, A. L., S. Liang, J. H. Bisesi, Jr., T. Sabo-Attwood, and A. T. Maurelli. 2023. A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19. PLoS One 18(4):e0284370. https://doi.org/10.1371/journal.pone.0284370 (accessed May 13, 2024).

Ramuta, M. D., et al. 2022. SARS-CoV-2 and other respiratory pathogens are detected in continuous air samples from congregate settings. Nature Communications 13(1):4717. https://doi.org/10.1038/s41467-022-32406-w (accessed May 13, 2024).

Robinson, C. A., H. Y. Hsieh, S. Y. Hsu, Y. Wang, B. T. Salcedo, A. Blelenchia, J. Klutts, S. Zemmer, M. Reynolds, E. Semkiw, T. Foley, X. F. Wan, C. G. Wieberg, J. Wenzel, C. H. Lin, and M. C. Johnson. 2022. Defining biological and biophysical properties of SARS-CoV-2 genetic material in wastewater. Science of The Total Environment 807:150786.

Rodríguez, A., J. Cui, N. Ramakrishnan, B. Adhikari, and B. A. Prakash. 2023. EINNs: Epidemiologically-informed neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 37(12):14453–14460. https://doi.org/10.1609/aaai.v37i12.26690 (accessed May 13, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Rodriguez-Mozaz, S., S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sanchez-Melsio, C. M. Borrego, D. Barceló, and J. L. Balcázar. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research 69:234–242. https://doi.org/10.1016/j.watres.2014.11.021 (accessed May 13, 2024).

Ross, J. S., J. Waldstreicher, and H. M. Krumholz. 2023. Data sharing—a new era for research funded by the U.S. government. New England Journal of Medicine 389(26):2408–2410. https://www.nejm.org/doi/10.1056/NEJMp2308792 (accessed May 13, 2024).

Rossi, A., J. Chavez, T. Iverson, J. Hergert, K. Oakeson, N. LaCross, C. Njoku, A. Gorzalski, and D. Gerrity. 2023. Candida auris discovery through community wastewater surveillance during healthcare outbreak, Nevada, USA, 2022. Emerging Infectious Diseases 29(2). https://doi.org/10.3201/eid2902.221523 (accessed May 13, 2024).

Rusiñol, M., S. Martínez-Puchol, E. Forés, M. Itarte, R. Girones, and S. Bofill-Mas. 2020. Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science & Health 17:21-28. https://doi.org/10.1016/j.coesh.2020.08.002 (accessed July 24, 2024).

Salem, N., A. Mansour, M. Ciuffo, B. W, Falk, and M. Turina. 2015. A new tobamovirus infecting tomato crops in Jordan. Archives of Virology 161(2):503–506. https://doi.org/10.1007/s00705-015-2677-7 (accessed May 13, 2024).

Schang, C., et al. 2021. Passive sampling of SARS-CoV-2 for wastewater surveillance. Environmental Science & Technology 55(15):10432–10441. https://doi.org/10.1021/acs.est.1c01530 (accessed May 13, 2024).

Schneider, R., K. Weisbeck, K. Sheth, P. Sikes, L. Stadler, K. B. Ensor, R. Shaw, C. Berkobien, A. Wheeler, C. D. Johnson, C. Lengsfeld, and L. Hopkins. 2024. Assessment of public health agency and utility training needs for CDC National Wastewater Surveillance System jurisdictions in the United States. https://doi.org/10.1177/15248399241275617 (accessed November 20, 2024).

Schoen, M. E., M. K. Wolfe, L. Li, D. Duong, B. J. White, B. Hughes, and A. B. Boehm. 2022. SARS-CoV-2 RNA wastewater settled solids surveillance frequency and impact on predicted COVID-19 incidence using a distributed lag model. ACS ES&T Water 2(11):2167–2174. https://doi.org/10.1021/acsestwater.2c00074 (accessed May 13, 2024).

Schussman, M. K., and S. L. McLellan. 2022. Effect of time and temperature on SARS-CoV-2 in municipal wastewater conveyance systems. Water 14(9):1373. https://doi.org/10.3390/w14091373 (accessed May 13, 2024).

Schussman, M. K., A. Roguet, A. Schmoldt, B. Dinan, and S. L. McLellan. 2022. Wastewater surveillance using ddPCR accurately tracked Omicron emergence due to altered N1 probe binding efficiency. Environmental Science: Water Research & Technology 8(10):2190–2195. https://doi.org/10.1039/D2EW00194B (accessed May 13, 2024).

Servetas, S. L., K. H. Parratt, N. E. Brinkman, O. C. Shanks, T. Smith, P. J. Mattson, and N. J. Lin. 2022. Standards to support an enduring capability in wastewater surveillance for public health: Where are we? Case Studies in Chemical and Environmental Engineering 6:100247.

Sheth, K., L. Hopkins, K. Domakonda, L. Stadler, K. B. Ensor, C. D. Johnson, J. White, D. Persse, and E. Septimus. 2024a. Wastewater target pathogens of public health importance for expanded sampling, Houston, Texas, USA. Emerging infectious diseases 30(8):14–17. https://doi.org/10.3201/eid3008.231564 (accessed November 20, 2024).

Sheth, K., K. Domakonda, K. Short, L. Stadler, K. B. Ensor, C. D. Johnson, S. L. Williams, D. Pearse, and L. Hopkins. 2024b. A novel framework for internal responses to detection of pathogens in wastewater by public health agencies. Public Health Reports, p.00333549241253787.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Shum, E. Y., J. H. Lai, S. Li, H. G. Lee, J. Soliman, V. K. Raol, C. K. Lee, S. P. A. Fodor, and H. C. Fan. 2022. Next-generation digital polymerase chain reaction: High-dynamic-range single-molecule DNA counting via ultrapartitioning. Analytical Chemistry 94(51):17868–17876. https://doi.org/10.1021/acs.analchem.2c03649 (accessed May 13, 2024).

Sikorski, M. J., and M. M. Levine. 2020. Reviving the “Moore swab”: A classic environmental surveillance tool involving filtration of flowing surface water and sewage water to recover typhoidal Salmonella bacteria. Applied and Environmental Microbiology 86(13). https://doi.org/10.1128/aem.00060-20 (accessed May 14, 2024).

Simpson, A., A. Topol, B. J. White, M. K. Wolfe, K. R. Wigginton, and A. B. Boehm. 2021. Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids. PeerJ 9:e11933. https://doi.org/10.7717/peerj.11933 (accessed May 14, 2024).

Sinton, L. W., R. K. Finlay, and D. J. Hannah. 1998. Distinguishing human from animal faecal contamination in water: A review. New Zealand Journal of Marine and Freshwater Research 32(2):323–348. https://doi.org/10.1080/00288330.1998.9516828 (accessed May 14, 2024).

Soloviev, K. 2016. 3 Steps to a Data-Driven Content Quality Approach. Contentquo. https://www.contentquo.com/blog/3-steps-to-a-data-driven-content-quality-approach (accessed November 20, 2024).

Spaulding, A. C., L. B. Saber, S. Kennedy, Y. Yang, K. Moore, Y. Wang, S. P. Hilton, T. Chang, P. Liu, V. L. Phillips, M. J. Akiyama, and C. L. Moe. 2023. Wastewater surveillance for SARS-CoV-2 in an Atlanta, Georgia jail: A study of the feasibility of wastewater monitoring and correlation of building wastewater and individual testing results. medRxiv. https://doi.org/10.1101/2023.05.17.23290000 (accessed May 14, 2024).

Steele, J. A., A. G. Zimmer-Faust, J. F. Griffith, and S. B. Weisberg. 2021. Sources of variability in methods for processing, storing, and concentrating SARS-CoV-2 in influent from urban wastewater treatment plants. medRxiv. https://doi.org/10.1101/2021.06.16.21259063 (accessed May 14, 2024).

Stone, W., B.-L. Jones, J. Wilsenach, and A. Botha. 2012. External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands. Applied and Environmental Microbiology 78(7):2443–2445. https://doi.org/10.1128/aem.06343-11 (accessed May 14, 2024).

Tanne, J. H. 2023. US expands testing of international air travellers to cover 30 respiratory viruses. British Medical Journal 383:2630. https://doi.org/10.1136/bmj.p2630 (accessed May 14, 2024).

Taylor, L. H., S. M. Latham, and M. E. J. Woolhouse. 2001. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356(1411):983–989. https://doi.org/10.1098/rstb.2001.0888 (accessed May 14, 2024).

Tayoun, A., P. R. Burchard, A. M. Caliendo, A. Scherer, and G. J. Tsongalis. 2015. A multiplex PCR assay for the simultaneous detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Experimental and Molecular Pathology 98(2):214–218. https://doi.org/10.1016/j.yexmp.2015.01.011 (accessed May 14, 2024).

Tedcastle, A., T. Wilton, E. Pegg, D. Klapsa, E. Bujaki, R. Mate, M. Fritzsche, M. Majumdar, and J. Martin. 2022. Detection of enterovirus D68 in wastewater samples from the UK between July and November 2021. Viruses 14(1):143. https://doi.org/10.3390/v14010143 (accessed May 14, 2024).

Teunis, P., K. Takumi, and K. Shinagawa. 2004. Dose response for infection by Escherichia coli O157:H7 from outbreak data. Risk Analysis 24(2):401–407. https://doi.org/10.1111/j.0272-4332.2004.00441.x (accessed May 14, 2024).

Teunis, P. F. M., F. H. A. Shukhrie, H. Vennema, J. Bogerman, M. F. C. Beersma, and M. P. G. Koopmans. 2014. Shedding of norovirus in symptomatic and asymptomatic infections. Epidemiology and Infection 143(8):1710–1717. https://doi.org/10.1017/s095026881400274x (accessed May 14, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Tiwari, A., W. Ahmed, S. Oikarinen, S. P. Sherchan, A. Heikinheimo, G. Jiang, S. L. Simpson, J. Greaves, and A. Bivins. 2022. Application of digital PCR for public health-related water quality monitoring. Science of the Total Environment 837:155663.

Trujillo, M., K. Cheung, A. Gao, I. Hoxie, S. Kannoly, N. Kubota, K. M. San, D. S. Smyth, and J. J. Dennehy. 2021. Protocol for safe, affordable, and reproducible isolation and quantitation of SARS-CoV-2 RNA from wastewater. PloS One 16(9):e0257454. https://doi.org/10.1371/journal.pone.0257454 (accessed July 12, 2024).

Tyson, G. W., J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram, P. M. Richardson, V. V. Solovyev, E. M. Rubin, D. S. Rokhsar, and J. F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. https://doi.org/10.1038/nature02340 (accessed May 14, 2024).

U.S. Census Bureau. 2022. The 2021 American Housing Survey. https://www.census.gov/programs-surveys/ahs/data/2021/ahs-2021-public-use-file--puf-/ahs-2021-national-publicuse-file--puf-.html (accessed May 14, 2024).

USDOT (U.S. Department of Transporation). 2024. International Aviation Development Series: U.S. international air passenger and freight statistics. Washington, DC: U.S. DOT.

Usmani, M., K. D. Brumfield, B. Magers, A. Zhou, C. Oh, Y. Mao, W. Brown, A. Schmidt, C.-Y. Wu, J. L. Shisler, T. H. Nguyen, A. Huq, R. Cowell, and A. Jutla. 2024. Building environmental and sociological predictive intelligence to understand the seasonal threat of SARS-CoV-2 in human populations. American Journal of Tropical Medicine and Hygiene 110(3):518–528. https://doi.org/10.4269/ajtmh.23-0077 (accessed May 14, 2024).

Uyeki, T. M., S. Milton, C. Abdul Hamid, C., Reinoso Webb, S. M. Presley, V. Shetty, S. N. Rollo, D. L. Martinez, S. Rai, E. R. Gonzales, K. L. Kniss, Y. Jang, J. C. Frederick, J. A. De La Cruz, J. Liddell, H. Di, M. K. Kirby, J. R. Barnes, and C. T. Davis. 2024. Highly pathogenic avian influenza A(H5N1) virus infection in a dairy farm worker. New England Journal of Medicine 390(21):2028–2029. https://doi.org/10.1056/NEJMc2405371 (accessed May 14, 2024).

Vaughan, L., M. Zhang, H. Gu, J. B. Rose, C. C. Naughton, G. Medema, V. Allan, A. Roiko, L. Blackhall, and A. Zanyadi. 2023. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Science of the Total Environment 858(Pt 1):159748. https://doi.org/10.1016/j.scitotenv.2022.159748 (accessed May 14, 2024).

Velappan, N., K. Davis-Anderson, and A. Deshpande. 2022. Warning signs of potential black swan outbreaks in infectious disease. Frontiers in Microbiology 13. https://doi.org/10.3389/fmicb.2022.845572 (accessed May 14, 2024).

Wade, M. J., A. L. Jacomo, E. Armenise, M. R. Brown, J. T. Bunce, G. J. Cameron, Z. Fang, D. F. Gilpin, D. W. Graham, J. M. Grimsley, and A. Hart. 2022. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. Journal of Hazardous Materials 424:127456.

WEF (Water Environment Federation). 2021. Safety, health, and security standards for water resource recovery, Manual of practice No. 1, 7th Edition. WEF Press. Alexandria, Virginia. 416 p.

Wegrzyn, R. D., G. D. Appiah, R. Morfino, S. R. Milford, A. T. Walker, E. T. Ernst, W. W. Darrow, S. L. Li, K. Robinson, D. MacCannell, D. Dai, B. P. Girinthian, A. L. Hicks, B. Cosca, G. Woronoff, A. M. Plocik, B. P. Girinathan, L. Moriarty, S. A. J. Guagliardo, M. S. Cetron, and C. R. Friedman. 2023. Early detection of severe acute respiratory syndrome coronavirus 2 variants using traveler-based genomic surveillance at 4 US airports, September 2021–January 2022. Clinical Infectious Diseases 76(3):e540–e543. https://doi.org/10.1093/cid/ciac461 (accessed May 14, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

Weil, M., M. Mandelboim, E. Mendelson, Y. Manor, L. Shulman, D. Ram, G. Barkai, Y. Shemer, D. Wolf, Z. Kra-oz, L. Weiss, R. Pando, M. Hindiyeh, and D. Sofer. 2017. Human enterovirus D68 in clinical and sewage samples in Israel. Journal of Clinical Virology 86:52–55. https://doi.org/10.1016/j.jcv.2016.11.013 (accessed May 14, 2024).

Whitney, O. N., L. C. Kennedy, V. B. Fan, A. Hinkle, R. Kantor, H. Greenwald, A. Crits-Christoph, B. Al-Sayeb, M. Chaplin, A. C. Maurer, R. Tijan, and K. L. Nelson. 2021. Sewage, salt, silica, and SARS-CoV-2 (4S): An economical kit-free method for direct capture of SARS-CoV-2 RNA from wastewater. Environmental Science & Technology 55(8):4880–4888. https://doi.org/10.1021/acs.est.0c08129 (accessed May 14, 2024).

Wilde, H., W. B. Perry, O. Jones, P. Kille, A. Weightman, D. L. Jones, G. Cross, and I. Durance. 2022. Accounting for dilution of SARS-CoV-2 in wastewater samples using physico-chemical markers. Water 14(18):2885.

WHO (World Health Organization). 2024. Laboratory biosafety guidance related to SARS-CoV-2 (COVID-19). https://iris.who.int/bitstream/handle/10665/376231/WHO-WHE-EPP-2024.3-eng.pdf?sequence=1 (accessed May 14, 2024).

Woerther, P.-L., C. Burdet, E. Chachaty, and A. Andremont. 2013. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clinical Microbiology Reviews 26(4):744–758. https://doi.org/10.1128/CMR.00023-13 (accessed May 14, 2024).

Wolfe, M. K., A. Topol, A. Knudson, A. Simpson, B. White, D. J. Vugia, A. T. Yu, L. Li, M. Balliet, P. Stoddard, G. S. Han, K. R. Wigginton, and A. B. Boehm. 2021. High-frequency, high-throughput quantification of SARS-CoV-2 RNA in wastewater settled solids at eight publicly owned treatment works in Northern California shows strong association with COVID-19 incidence. mSystems 6(5). https://doi.org/10.1128/msystems.00829-21 (accessed June 28, 2024).

Wolfe, M. K., D. Duong, K. M. Bakker, M. Ammerman, L. Mortenson, B. Hughes, P. Arts, A. S. Laurig, W. J. Fitzsimmons, E. Bendall, C. E. Hwang, E. T. Martin, B. J. White, A. B. Boehm, and K. R. Wigginton. 2022. Wastewater-based detection of two influenza outbreaks. Environmental Science & Technology Letters 9(8):687–692. https://doi.org/10.1021/acs.estlett.2c00350 (accessed May 14, 2024).

Wolfe, M. K., A. T. Yu, D. Duong, M. S. Rane, B. Hughes, V. Chan-Herur, M. Donnelly, S. Chai, B. J. White, D. J. Vugia, and A. B. Boehm. 2023. Use of wastewater for mpox outbreak surveillance in California. The New England Journal of Medicine 388(6):570–572. https://doi.org/10.1056/nejmc2213882 (accessed May 14, 2024).

Wolfe, M. K., A. H. Paulos, A. Zulli, D. Duong, B. Sheldon, B. J. White, and A. B. Boehm. 2024. Wastewater detection of emerging Arbovirus infections: Case study of dengue in the United States. Environmental Science and Technology Letters 11(1):9–15. https://doi.org/10.1021/acs.estlett.3c00769 (accessed May 14, 2024).

Wolfe, M. K., D. Duoung, B. Shelden, E. M. G. Chan, V. Chan-herur, S. Hilton, A. H. Paulos, X. R. S. Xu, A. Zulli, B. J. White, and A. B. Boehm. 2024b. Detection of hemagglutinin H5 influenza A virus sequence in municipal wastewater solids at wastewater treatment plants with increases in influenza A in spring, 2024. Environmental Science & Technology Letters 11(6):526-532.

Wolken, M., T. Sun, C. McCall, R. Schneider, K. Caton, C. Hundley, L. Hopkins, K. Endsor, K. Domakonda, P. Kalvapalle, D. Persse, S. Williams, and L. B. Stadler. 2023. Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. Water Research. https://doi.org/10.1016/j.watres.2023.119648 (accessed May 14, 2024).

Wollants, E., E. Keyaerts, L. Cuypers, M. Bloemen, M. Thijssen, S. Ombelet, J. Raymenants, K. Beuselinck, L. Laenen, L. Budts, B. Pussig, K. Lagrou, M. V. Ranst, and E. Andre. 2022. Environmental circulation of adenovirus 40/41 and SARS-CoV-2 in the context of the emergence of acute hepatitis of unknown origin. medRxiv. https://doi.org/10.1101/2022.06.08.22276091 (accessed May 14, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.

The Water Research Foundation. 2020. Wastewater surveillance of the COVID-19 genetic signal in sewersheds recommendations from global experts. Alexandria, VA: The Water Research Foundation. https://www.waterrf.org/sites/default/files/file/2020-06/COVID-19_SummitHandout-v3b.pdf (accessed April 16, 2024).

Yan, T., P. O’Brien, J. M. Shelton, A. C. Whelen, and E. Pagaling. 2018. Municipal wastewater as a microbial surveillance platform for enteric diseases: A case study for Salmonella and salmonellosis. Environmental Science & Technology 52(8):4869–4877. https://doi.org/10.1021/acs.est.8b00163 (accessed May 14, 2024).

Ye, Y., R. M. Ellenberg, K. E. Graham, and K. R. Wigginton. 2016. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environmental Science & Technology 50(10):5077–5085. https://doi.org/10.1021/acs.est.6b00876 (accessed May 14, 2024).

Yu, Q., S. W. Olesen, C. Duvallet, and Y. H. Grad. 2024. Assessment of sewer connectivity in the United States and its implications for equity in wastewater-based epidemiology. medRxiv. https://doi.org/10.1101/2023.05.24.23290486 (accessed May 14, 2024).

Zahedi, A., P. Monis, D. Deere, and U. Ryan. 2021. Wastewater-based epidemiology—surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitology Research 120(12):4167-4188. https://doi.org/10.1007/s00436-020-07023-5 (accessed July 24, 2024).

Zambrana, W., C. Huang, D. Solis, M. K. Sahoo, B. A. Pinsky, and A. B. Boehm. 2024. Spatial and temporal variation in respiratory syncytial virus (RSV) subtype RNA in wastewater and relation to clinical specimens. mSphere 0:e00224-24.

Zhang, L., F. Chen, Z. Zeng, M. Xu, F. Sun, L. Yang, X. Bi, Y. Lin, Y. Gao, H. Hao, W. Yi, M. Li, and X. Xie. 2021. Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology 12. https://doi.org/10.3389/fmicb.2021.766364 (accessed May 14, 2024).

Zhang, S., J. Shi, X. Li, L. Coin, J. W. O’Brien, M. Sivakumar, F. Hai, and G. Jiang. 2023a. Triplex qPCR assay for Campylobacter jejuni and Campylobacter coli monitoring in wastewater. Science of the Total Environment 892:164574. https://doi.org/10.1016/j.scitotenv.2023.164574 (accessed May 14, 2024).

Zhang, S., J. Shi, E. Sharma, X. Li, S. Gao, X. Zhou, J. O’Brien, L. Coin, Y. Liu, M. Sivakumar, F. Hai, and G. Jiang. 2023b. In-sewer decay and partitioning of Campylobacter jejuni and Campylobacter coli and implications for their wastewater surveillance. Water Research 233:119737. https://doi.org/10.1016/j.watres.2023.119737 (accessed May 14, 2024).

Zhao, C., B. Dimitrov, M. Goldman, S. Nayfach, and K. S. Pollard. 2022. MIDAS2: Metagenomic Intra-species Diversity Analysis System. Bioinformatics 39(1). https://doi.org/10.1093/bioinformatics/btac713 (accessed May 14, 2024).

Zheng, S., et al. 2020. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. British Medical Journal 369:m1443. https://doi.org/doi:10.1136/bmj.m1443 (accessed May 14, 2024).

Zheng, X., K. Zhao, X. Xu, Y. Deng, L. Leung, J. T. Wu, G. M. Leung, M. Peiris, L. L. M. Poon, and T. Zhang. 2023. Development and application of influenza virus wastewater surveillance in Hong Kong. Water Research 245:120594. https://doi.org/10.1016/j.watres.2023.120594 (accessed November 20, 2024).

Zulli, A., M. R. Varkila, J. Parsonnet, M. K. Wolfe, and A. B. Boehm. 2024. Observations of Respiratory Syncytial Virus (RSV) nucleic acids in wastewater solids across the United States in the 2022–2023 season: Relationships with RSV infection positivity and hospitalization rates. ACS ES&T Water 4(4):1657-1667. https://doi.org/10.1021/acsestwater.3c00725 (accessed July 12, 2024).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 157
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 158
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 159
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 160
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 161
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 162
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 163
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 164
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 165
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 166
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 167
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 168
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 169
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 170
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 171
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 172
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 173
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. Increasing the Utility of Wastewater-based Disease Surveillance for Public Health Action: A Phase 2 Report. Washington, DC: The National Academies Press. doi: 10.17226/27516.
Page 174
Next Chapter: Appendix: Committee Members and Staff Biographical Sketches
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.