Previous Chapter: 5 Closing Discussion
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. AI for Scientific Discovery: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27457.

References

Baek, M., F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R. Lee, J. Wang, Q. Cong, L. N. Kinch, R. D. Schaeffer, C. Millán, H. Park, C. Adams, C. R. Glassman, A. DeGiovanni, J. H. Pereira, A. V. Rodrigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, T. Sagmeister, C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U. Dalwadi, C. K. Yip, J. E. Burke, K. C. Garcia, N. V. Grishin, P. D. Adams, R. J. Read, and D. Baker. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557):871–876.

Bent, O., S. L. Remy, S. Roberts, and A. Walcott-Bryant. 2018. Novel exploration techniques (NETs) for malaria policy interventions. Proceedings of the AAAI Conference on Artificial Intelligence 32(1):7735–7740.

Bentley, A. R., S. L. Callier, and C. N. Rotimi. 2020. Evaluating the promise of inclusion of African ancestry populations in genomics. npj Genomic Medicine 5:5. Available at https://www.nature.com/articles/s41525-019-0111-x#citeas (accessed October 15, 2023).

Bongard, J., and H. Lipson. 2007. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences 104(24):9943–9948.

Byrd, D., M. Hybinette, and T. Hybinette Balch. 2020. ABIDES: Towards high-fidelity multi-agent market simulation. In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: Association for Computing Machinery. Pp. 11–22.

Devaney, S. 2019. All of us. Nature 576:S14–S17. Available at https://www.nature.com/articles/d41586-019-03717-8 (accessed October 15, 2023).

Kitano, H. 2016. Artificial intelligence to win the Nobel Prize and beyond: Creating the engine for scientific discovery. AI Magazine 37(1):39. Available at https://doi.org/10.1609/aimag.v37i1.2642 (accessed October 15, 2023).

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. AI for Scientific Discovery: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27457.

Kitano, H. 2021. Nobel Turing Challenge: Creating the engine for scientific discovery. npj Systems Biology and Applications 7(1). Available at https://doi.org/10.1038/s41540-021-00189-3 (accessed October 15, 2023).

Kratzert, F., D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing. 2019. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences 23:5089–5110.

Krenn, M., R. Pollice, S. Y. Guo, M. Aldeghi, A. Cervera-Lierta, P. Friederich, G. Dos Passos Gomes, F. Häse, A. Jinich, A. Nigam, A. Yao, and A. Aspuru-Guzik. 2022. On scientific understanding with artificial intelligence. Nature Reviews Physics 4(12):761–769.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2022. Automated Research Workflows for Accelerated Discovery: Closing the Knowledge Discovery Loop. Washington, DC: The National Academies Press. Available at https://doi.org/10.17226/26532 (accessed October 15, 2023).

Nature. 2023. For chemists, the AI revolution has yet to arrive. Editorial. Nature 617(7961):438.

Nevo, S., E. Morin, A. Gerzi Rosenthal, A. Metzger, C. Barshai, D. Weitzner, D. Voloshin, F. Kratzert, G. Elidan, G. Dror, G. Begelman, G. Nearing, G. Shalev, H. Noga, I. Shavitt, L. Yuklea, M. Royz, N. Giladi, N. Peled Levi, O. Reich, O. Gilon, R. Maor, S. Timnat, T. Shechter, V. Anisimov, Y. Gigi, Y. Levin, Z. Moshe, Z. Ben-Haim, A. Hassidim, and Y. Matias. 2022. Flood forecasting with machine learning models in an operational framework. Hydrology and Earth System Sciences 26:4013–4032.

Roberts, M., D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung, A. I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer, J. R. Weir-McCall, Z. Teng, E. Gkrania-Klotsas, J. H. F. Rudd, E. Sala, and C.-B. Schönlieb (on behalf of the AIX-COVNET collaboration). 2021. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence 3:199–217.

Schmidt, M., and H. Lipson. 2009. Distilling free-form natural laws from experimental data. Science 324(5923):81–85.

Simon, H. A. 1973. Does scientific discovery have a logic? Philosophy of Science 40(4):471–480.

Sparkes, A., W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, M. Markham, J. Rowland, L. N. Soldatova, K. E. Whelan, M. Young, and R. D. King. 2010. Towards robot scientists for autonomous scientific discovery. Automated Experimentation 2:1.

Wagstaff, K. L., I. J. Daubar, G. Doran, M. J. Munje, V. T. Bickel, A. Gao, J. Pate, and D. Wexler. 2022. Using machine learning to reduce observational biases when detecting new impacts on Mars. Icarus 386:115146.

Watson, J. L., D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles, B. L. M. Wicky, N. Hanikel, S. J. Pellock, A. Courbet, W. Sheffler, J. Wang, P. Venkatesh, I. Sappington, S. V. Torres, A. Lauko, V. De Bortoli, E. Mathieu, S. Ovchinnikov, R. Barzilay, T. S. Jaakkola, F. DiMaio, M. Baek, and D. Baker. 2023. De novo design of protein structure and function with RFdiffusion. Nature 620:1089–1100.

Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. AI for Scientific Discovery: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27457.
Page 37
Suggested Citation: "References." National Academies of Sciences, Engineering, and Medicine. 2024. AI for Scientific Discovery: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27457.
Page 38
Next Chapter: Appendix A: Public Meeting Agenda
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.