Previous Chapter: 11 Future Directions
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.

Appendix A

References

Cousijn, H., A. Kenall, E. Ganley, M. Harrison, D. Kernohan, T. Lemberger, F. Murphy, P. Polischuk, S. Taylor, M. Martone, and T. Clark. 2018. A data citation roadmap for scientific publishers. Scientific Data 5(November):180259. doi: 10.1038/sdata.2018.259.

Glatard, T., G. Kiar, T. Aumentado-Armstrong, N. Beck, P. Bellec, R. Bernard, A. Bonnet, et al. 2018. Boutiques: A flexible framework to integrate command-line applications in computing platforms. GigaScience 7(5). doi: 10.1093/gigascience/giy016.

Gorgolewski, K. J., F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capot , M. Chakravarty, N. W. Churchill, et al. 2017. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology 13(3):e1005209. doi: 10.1371/journal.pcbi.1005209.

King, M. D., D. Wood, B. Miller, R. Kelly, D. Landis, W. Courtney, R. Wang, J. A. Turner, and V. D. Calhoun. 2014. Automated collection of imaging and phenotypic data to centralized and distributed data repositories. Frontiers in Neuroinformatics 8:60. doi: 10.3389/fninf.2014.00060.

Lee, C. A., R. B. Bohn, and M. Michel. 2020. The NIST Cloud Federation Reference Architecture. NIST Special Publication (SP) 500-332. National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-332.pdf (accessed February 28, 2020).

Martone, M. (ed.). 2014. Data Citation Synthesis Group: Joint declaration of data citation principles. FORCE11. doi: 10.25490/a97f-egyk.

Mell, P., and T. Grance. 2011. The NIST definition of cloud computing. NIST Special Publication (SP) 800-145. doi: 10.6028/NIST.SP.800-145.

Pierce, H. H., A. Dev, E. Statham, and B. E. Bierer. 2019. Credit data generators for data reuse. Nature 570(7759):30–32. doi: 10.1038/d41586-019-01715-4.

Poldrack, R. A., D. M. Barch, J. P. Mitchell, T. D. Wager, A. D. Wagner, J. T. Devlin, C. Cumba, O. Koyejo, and M. P. Milham. 2013. Toward open sharing of task-based FMRI data: The OpenfMRI Project. Frontiers in Neuroinformatics 7:12. doi: 10.3389/fninf.2013.00012.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.

Psychiatric GWAS Consortium Steering Committee. 2009. A framework for interpreting genome-wide association studies of psychiatric disorders. Molecular Psychiatry 14(1):10–17. doi: 10.1038/mp.2008.126.

Rocher, L., J. M. Hendrickx, and Y.-A. de Montjoye. 2019. Estimating the success of re-identifications in incomplete datasets using generative models. Nature Communications 10(1):1–9. doi: 10.1038/s41467-019-10933-3.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
Page 73
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2020. Neuroscience Data in the Cloud: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25653.
Page 74
Next Chapter: Appendix B: Workshop Agenda
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.