NATIONAL Sciences
ACADEMIES Medicine

Thriving in Space - Ensuring the Future of Biological and Physical Sciences Research

A Decadal Survey for 2023-2032

Robert J. Ferl and Krystyn J. Van Vliet, Co-Chairs

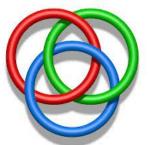
nationalacademies.org/bps-decadal

The space ecosystem is expanding rapidly

The next decade will involve:

- More people
- More destinations, including the Moon and Mars
- Longer duration missions
- More activity types
- More commercialization

The space ecosystem is expanding rapidly


The next decade will involve:

- More people
- More destinations, including the Moon and Mars
- Longer duration missions
- More activity types
- More commercialization

Melding of science across the mission space Rethink the MET opportunities Specificity of location and broad sampling*

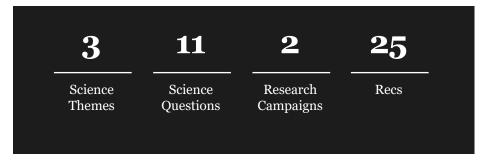
Steering Committee, Expert Panels, & Community Input

Biological Sciences
Physical Sciences
Engineering and Science
Interface

Steering Committee: 18 experts from across the US and the BPS disciplines

Panels: 50+ experts, organized in working groups that mixed BPS disciplinary expertise on the current state of the field, future science priorities, and feasibility

Community Input: 250+ topical concept papers; 60+ research campaign concept papers; 2+ years of public meetings with government + industry experts


Report Snapshot

nationalacademies.org/bps-decadal

NATIONAL Sciences Engineering

- Summary
- 1: Introduction
- 2: Current State of Knowledge in BPS
- 3: Key Science Themes and Questions
- 4: Science to Enable Space Exploration
- 5: Science Enabled by the Space Environment
- 6: Research Campaigns
- 7: Infrastructure, Access, and Community

Focus on Key Scientific Questions

Key Science Themes

ADAPTING TO SPACE

What fundamental processes change when away from Earth?

LIVING AND TRAVELING IN SPACE

What does it take to occupy space environment over the long haul?

PROBING PHENOMENA HIDDEN BY EARTH

What principles are hidden by gravity or revealed only by being in space?

Key Science Themes

ADAPTING TO SPACE

What fundamental processes change when away from Earth?

LIVING AND TRAVELING IN SPACE

What does it take to occupy space environment over the long haul?

PROBING PHENOMENA HIDDEN BY EARTH

What principles are hidden by gravity or revealed only by being in space **or on the**Moon?

Adapting to Space Key Scientific Questions

- How does the space environment influence biological mechanisms required for organisms to survive the transitions to and from space, and thrive while off Earth?
- How do genetic diversity and life history influence adaptation to the space environment?
- How does the space environment alter interactions between organisms?

Adapting to Space Key Scientific Questions

- How does the space environment influence biological mechanisms required for organisms to survive the transitions to and from space, and thrive while off Earth?
- How do genetic diversity and life history influence adaptation to the space environment?
- How does the space environment alter interactions between organisms?

Living and Traveling in Space Key Scientific Questions

- What are the important multi-generational effects of the space environment on growth, development, and reproduction?
- What principles guide the integration of biological and abiotic systems to create sustainable and functional extraterrestrial habitats?
- What principles enable identification, extraction, processing, and use of materials found in extraterrestrial environments to enable long-term, sustained human and robotic space exploration?
- What are the relevant chemical and physical properties and phenomena that govern the behavior of fluids in space environments?

Living and Traveling in Space Key Scientific Questions

- What are the important multi-generational effects of the space environment on growth, development, and reproduction?
- What principles guide the integration of biological and abiotic systems to create sustainable and functional extraterrestrial habitats?
- What principles enable identification, extraction, processing, and use of materials found in extraterrestrial environments to enable long-term, sustained human and robotic space exploration?
- What are the relevant chemical and physical properties and phenomena that govern the behavior of fluids in space environments?

Probing Phenomena Hidden by Gravity or Terrestrial Limitations Key Scientific Questions

- What are the mechanisms by which organisms sense and respond to physical properties of surroundings, and to applied mechanical forces including gravitational force?
- What are the fundamental principles that organize the structure and functionality of materials, including but not limited to soft and active matter?
- What are the fundamental laws that govern the behavior of systems that are far from equilibrium?
- What new physics, including particle physics, general relativity, and quantum mechanics, can be discovered with experiments that can only be carried out in space?

Probing Phenomena Hidden by Gravity or Terrestrial Limitations

Key Scientific Questions

- What are the mechanisms by which organisms sense and respond to physical properties of surroundings, and to applied mechanical forces including gravitational force? Stable 1/6g?
- What are the fundamental principles that organize the structure and functionality of materials, including but not limited to soft and active matter? Stable 1/6g?
- What are the fundamental laws that govern the behavior of systems that are far from equilibrium?
- What new physics, including particle physics, general relativity, and quantum mechanics, can be discovered with experiments that can only be carried out on the moon?

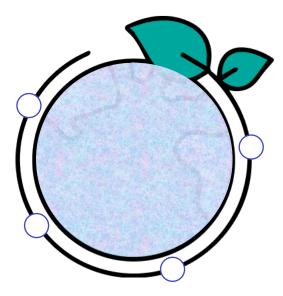
Connect to societal impact with Research Campaigns

New **Research Campaigns** with audacious goals will help drive solutions to the key science questions within the decade and make best use of missions to the Moon and Mars.

Research Campaigns

BLiSS

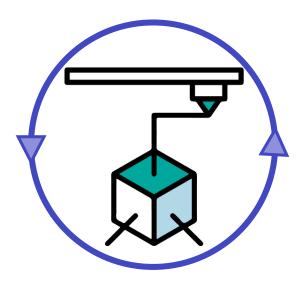
Bioregenerative Life Support Systems


MATRICES

Manufacturing mATeRials and ProcessEs for Sustainability in Space

Research Campaigns

BLiSS Goals

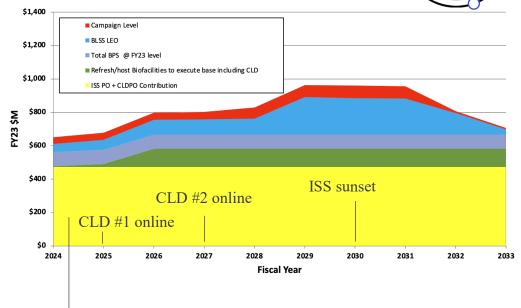

In the context of global competition for LEO research with Earth benefits

1. Self-sustainable system to produce food, clean water, renew air, process waste, and create critical materials to meet the challenges of long-duration space missions.

Research Campaigns

MATRICES Goals

In the context of global competition for resource use & manufacturing expertise off-Earth


1. Learn how materials and energy interact in nonterrestrial environments, and use that knowledge to design infrastructure for responsible space exploration.

Research Campaign Assumptions

- At least 2 commercial lunar destinations (CLDs) for scientific research use this decade. Otherwise, US severely disadvantaged on prep for Moon to Mars.
- Launch costs excluded from *BPS*research program cost estimates,
 consistent with current practice
- Coordination services provided by US
 Program Office, for LEO and other
 research destinations

ISS+CLD PO CLD Contribution: ROM estimate of the allocation of launch and return vehicle services, crew time and integration and operations services provided for the total BPS program