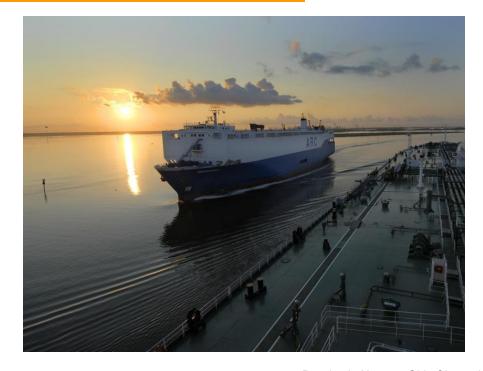
Three Questions of Risk Analysis

- What can go wrong?
- What are the consequences ?
- How likely are they?
- How can we anticipate and manage risk?


Precursors and Leading Indictors:

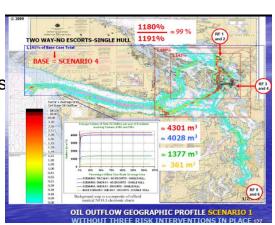
Anticipating Safety Performance In Marine Transportation

Martha Grabowski

Le Moyne College
Rensselaer Polytechnic Institute
 grabowsk@lemoyne.edu
http://web.lemoyne.edu/~grabowsk
Twitter: grabowsk2

National Academies Marine Board Fall Meeting Washington, DC 29 October 2014

Maritime Risk


Simulation, Human Error Models, Oil Outflow

- 10-year vessel traffic simulation, what-if analyses
 - AIS, VTS, wind, ice, visibility, data, pilot routes
- Accident-incident database drives simulation, human error MISL, State, Pilot, Local, Company data

■ Evaluate Risk Mitigation measures → Recommendations

- Sponsors: CG HQ/MSEP, COTP, Harbor Safety Committees, States/Parishes, Industry, Stakeholders, RCAC, Public, NOAA, USACOE
- Peer reviewed by National Academies
- PAWSA Model
 - Washington State Office of Marine Safety, Wash State Ferries
 - Lower Mississippi River, Port of Houston,
 - San Francisco Fast Ferry
 Prince William Sound Risk Assessment
 Tanker Traffic in Puget Sound/BP*-- Tug Escorts

Anticipating Safety Performance

Simulation, Human Error Modeling, Oil Outflow Models, FMEA, Influence Diagrams and...

Examine the linkage between safety culture and safety performance in the maritime industry

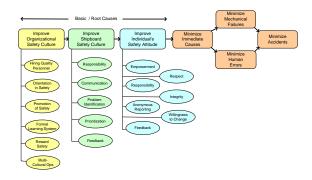
Partnership between

- American Bureau of Shipping,
- U.S. Coast Guard,
- 3 shipping companies

1 U.S. domestic tanker operator

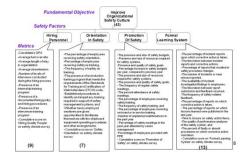
1 International tanker operator

national container operator



http://www.shipspotting.com/modules/myalbum/photo.php?lid=72482.

Safety Culture, Performance


Safety factors

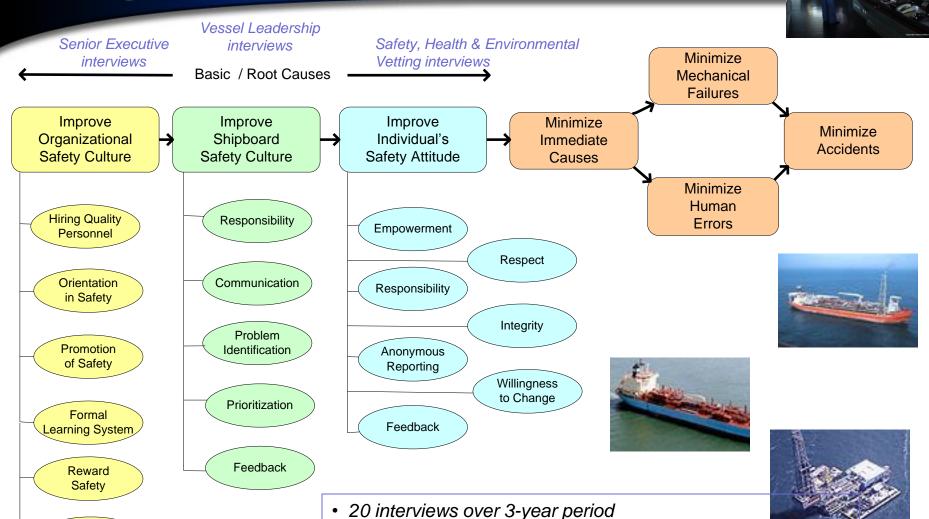
- Characteristics, artifacts of culture
- Interviews, data gathering

Safety factor metrics

Measuring characteristics of culture

3 companies 1764 participants 102 vessels

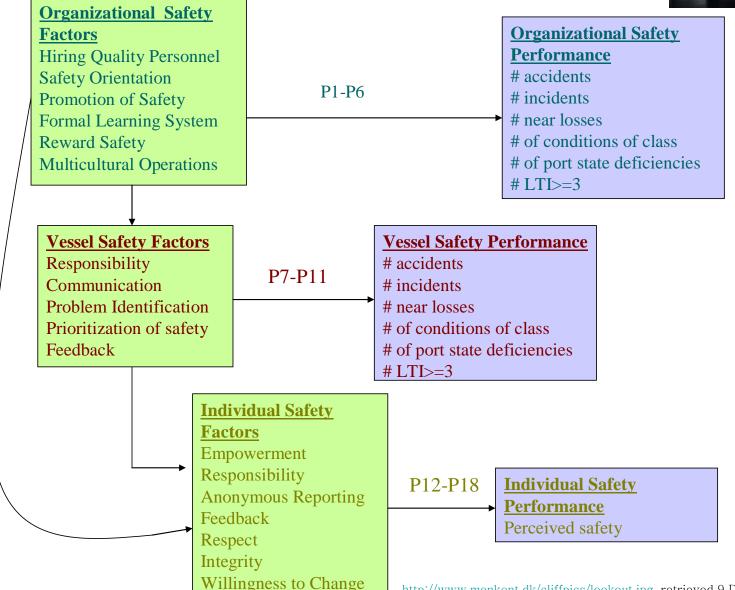
Safety performance data


- Accidents, incidents, near misses, conditions of class, port state deficiencies, LTI >= 3 days
- Survey data perceived safety
- Validation data
 - US Coast Guard Marine Safety Mgmt System (MSMS), MISLE, MSIS, MinMod, CASMAIN, etc.
 - National Transportation Safety Board (NTSB) reports
 - UK MAIB database, Paris, Hong Kong MAIB
 - Lloyd's List, Equasis, NOAA oil spill databases
 - Coastal state, local, pilot, environmental, native data
 - Open source, proprietary, company-sensitive data

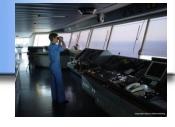
Integration

Safety Factor Model

Multi-**Cultural Ops**


- Validate existing safety culture surveys nuclear, chemical,
- Pilot test shipboard, shoreside safety culture surveys

· Gather safety factor metrics and data


aviation, offshore, medical

Initial Research Framework

Safety Factor Metrics

Fundamental Objective

Improve Organizational Safety Culture (43)

Senior Executive Interviews

Safety Factors

Hiring Personnel Orientation In Safety

Promotion Of Safety

Formal Learning System

Metrics

- Candidate's GPA
- Average turnover rate
- Average length of stay in organization
- Average absenteeism
- Number of levels of interviews conducted during the hiring process
- Presence of an internship training program
- Presence of a documented hiring policy and hiring procedures
- Presence of an interviewer training program
- Cumulative score on 'Hiring Quality People' on safety climate survey

- •The percentage of employees receiving safety orientation,
- Percentage of employees receiving safety re-training,
- •The frequency of safety retraining.
- •The presence of an induction training program that meets the requirements of the Standards for Training and Certification of Watchstanders (STCW) code,
- Established procedures to identify and impart any training required in support of safety management systems, and Whether newly employed
- seafarers are given opportunities to familiarize themselves with the shipboard equipment operating procedures and other arrangements.
- Cumulative score on 'Safety Orientation' on safety climate survey

(7)

- •The presence and size of safety budgets,
- · Presence and size of resources required for safety systems,
- Presence and quality of safety goals
- Percentage increase in safety budgets per year, compared to previous year
- •The presence and size of resources required for safety systems,
- •The presence and quality of safety goals,
- The frequency of regular safety meetings,
- •The percent attendance at safety meetings,
- •The percentage of employees receiving safety training,
- •The frequency of safety training, and
- •The percentage of employees receiving on-board or in-service training.
- •Number of unplanned maintenances in the past year
- Percentage of safety meetings in the past year attended by senior management
- Percentage of employees provided with
- · Cumulative score on 'Promotion of Safety' on safety climate survey

- •The percentage of incident reports upon which corrective action is taken.
- •The time taken between incident reports and corrective actions.
- Percentage of reports that resulted in safety procedure changes,
- •The number of incidents or near misses reported.
- The availability of incident investigation findings to employees,
- •The time taken between report submission and feedback received.
- The frequency of safety-related feedback.
- •The percentage of reports on which corrective action is taken,
- The percentage of reports on which lessons learned were published in the last vear.
- •Time to closure on safety action items,
- •The quality of performance analyses of the safety system, and
- •The percent of faulty or absent procedures on which corrective action was taken.
- Cumulative score on 'Formal Learning' System' on safety climate survey

(13)

(9)

(14)

8

Safety Performance

Organization	Accidents	Incidents	Near Losses	Port State Deficiencies		LTI >=3
Industry Partner 1	1*	N/A	60	6*	1*	7*
Industry Partner 2	31*	N/A	40	15*	16*	25*
Industry Partner 3	47	73	174	23*	39*	10*
Total	79	73	274	44	56	42

Company proprietary data

- * = small sample size; t = 1 year; Table 5
- US Coast Guard Marine Safety Mgmt System (MSMS), MISLE, MSIS, MinMOD, CASMAIN, etc.
- Coastal states, pilot organization, environmental groups' data
- National Transportation Safety Board reports
- UK MAIB, Hong Kong Marine Dept, Paris, Equasis databases
- Lloyd's List, NOAA spill databases

Open source, proprietary, company-sensitive data

Organizational Safety Results

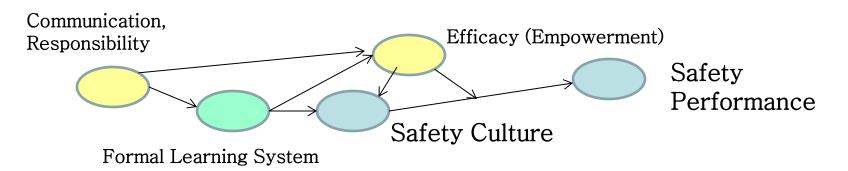
- Safety Factor Categories
 - Hiring Quality Personnel
 - Safety Orientation
 - Promotion of Safety
 - Formal Learning System
 - Reward Safety
 - Multicultural Operations

Safety Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days

Highlighted Organizational Safety Factors were significant for highlighted Performance Measures

Initial Study Limitations


- Correlations, not causality
 - Higher order statistical analyses followed (SEM, binomial regression)
- Longitudinal assessments needed
 - Within, and cross-organizational analyses
 - Benchmark results vs. other safety factor studies
- Small # of organizations (n = 3 companies)
 - Trend analyses require further data collection
- Safety factors and metrics provide starting point for measurement over time

Secondary Analysis (2011-2014)

Network of safety culture influences (SF's for vessel, org)

(DeJoy, et al., 2004; Neal, et al, 2000; Zohar, 1980; 2003).

Network Effects varied by vessel, company, trade

- Empowerment (Individual)
- Communication (Vessel, Individual)
- Formal Learning System (not Anonymous Reporting)
- Responsibility (Vessel, Individual)

Efficacy's Moderating Effect on Team (Vessel) Performance

Safety Culture

H1, H2***, H3Alt***

Safety Performance

- # accidents
- # unplanned maintenance
- # safety suggestions

N = 23 vessels

(vs. 102; 239 vessels; missing data)

H4A, *H4B****, *H4CAlt*****

Vessel level

- Negative binomial regression
- Accidents: Zero-inflated negative binomial regression

Worker Efficacy

Efficacy: Perceived ability to exert control over outcomes

(Bandura, 1977; 1997)

--measured at individual level, aggregated

Efficacy (Behavioral proactivity) motivates safety improvements

- --fewer accidents
- --fewer unplanned maintenance activities
- --more (or fewer?) safety suggestions

Safety Culture and Vessel Performance ...moderated by Vessel Efficacy

Vessel Efficacy

High Low More accidents Fewer accidents High More safety suggestns **Safety Culture** Even more accidents More unplanned More safety suggestns maintenance More accidents -----Low <------More unplanned maintenance-------

- Negative binomial regression
- Accidents: Zero-inflated negative binomial regression

N = 23 vessels

(vs. 102; missing data)

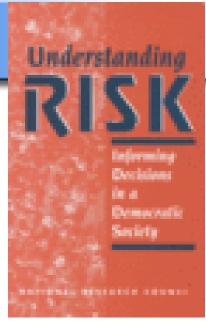
Implications

- Networks of safety culture influences
- Moderating influence of efficacy/empowerment
- Safety culture manifests at different org'l levels
 - Safety culture metrics, rewards, incentives vary across organizational levels
- Efficacy/empowerment can be maladaptive
 - Especially with high safety culture
 - Not particularly helpful –maladaptive--in uncertain, high stress and reactive problem solving settings
- Multi-level, network data analyses
 - Secondary data analysis provides new insights

References

- Choo, A. & Grabowski, M.R. 2014 "Linking Safety Climate to Safety Improvement Efforts and Operational Disruptions: The Moderating Role of Efficacious Workers" submitted to *Production & Operations Management*. May 17.
- Dhami, H. & Grabowski, M.R. 2011. "Technology Impacts on Safety and Decision-Making over Time in Marine Transportation," Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. September, 225: 1-24. Special issue on Risk and Reliability in Marine Transportation.
- Grabowski, M.R., You, Z., Song, H., Wang, H. & Merrick, J.R. 2010, "Sailing on Friday: Developing the Link between Organizational Safety Culture and Performance in Safety-Critical Systems." *IEEE Transactions on Systems, Man & Cybernetics, Part A, Systems and Humans*, 40:2, March, 263-283. doi: 10.1109/TSMCA.2009.2035300.
- Grabowski, M.R., You, Z., Zhou, Z., Song, H., Steward, M. & Steward, B. 2009. "Human and Organizational Error Data Challenges in Complex, Large-Scale Systems." *Safety Science*, 47:9, October, 1185-1194, doi:10.1016/j.ssci.2009.01.008.
- Grabowski, M.R., Ayyalasomayajula, P., Merrick, J.R., Harrald, J.H. & Roberts, K.H. 2007. "Leading Indicators of Safety in Virtual Organizations." *Safety Science*. 45:10, December, 1013-1043. DOI doi:10.1016/j.ssci.2006.09.007.
- Grabowski, M.R., Ayyalasomayajula, P. Merrick, J., & McCafferty, D. 2007. "Accident Precursors and Safety Nets: Leading Indicators of Tanker Operations Safety." *Maritime Policy and Management*, 34:5, October, 405-425.
- National Research Council. 2009. Risk of Vessel Accidents and Spills in the Aleutian Islands: Designing a Comprehensive Risk Assessment. Special Report 293. Washington, DC: National Academies Press.

 http://www.nap.edu/openbook.php?record_id=12443&page=73, retrieved 21 October 2011.


Appendix

Understanding Risk (NRC, 1996)

- Get the right science
- Get the science right
- Get the right participation
- Get the participation right, and

■ Develop an accurate, balanced and informative synthesis (p. 132).

Participants

	Domestic Tanker	International Tanker	Container	Total
Shipboard	77	846	684	1607
Shoreside	22	97	38	157
Total Individual	99	943	722	1764
Vessels	7	39	56	102

- Domestic US tanker operator (Initial and Follow up Study)
- International tanker operator (Initial study)
- International container operator (Initial study completed)

Organizational Safety Results

- Safety Factor Categories
 - Hiring Quality Personnel
 - Safety Orientation
 - Promotion of Safety
 - Formal Learning System
 - Reward Safety
 - Multicultural Operations

Safety Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days

Highlighted Organizational Safety Factors were significant for highlighted Performance Measures

Vessel Safety Results

Safety Factor Categories

- Communication
- Responsibility
- Problem Identification
- Feedback
- Prioritization of Safety

Performance Measures

- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days
- Perceived Safety based on Survey results

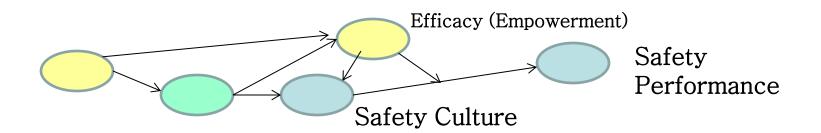
Highlighted Vessel Safety Factors were significant for highlighted Performance Measures

Individual Safety Results

Safety Factor Categories

- Empowerment
- Responsibility
- Anonymous Reporting
- Feedback
- Respect
- Integrity
- Willingness to Change

Performance Measures


- Number of accidents
- Number of incidents
- Number of near losses
- Number of Conditions of Class
- Number of Port State Deficiencies
- Number of LTI≥ 3 days
- Perceived Safety based on Survey results

Highlighted Individual Safety Factors were significant for highlighted Performance Measures

Secondary Analysis (2011-2014)

- Network of safety culture influences
- (DeJoy, et al., 2004; Neal, et al, 2000; Zohar, 1980; 2003).

- Assumption: When safety culture (climate) high, workers perceive safety as critical
 - Workers & supervisors actively make causal inferences about safety (DeJoy, 1994; Hofmann & Stetzer, 1998)
 - Workers are motivated to be proactive in identifying & correcting anomalies (O'Dea & Flin, 2001; Parker, et al., 2003; Simard & Marchand, 1995)